Citation: | WANG Rui, ZHOU Xinjie, DU Xiqin, HAO Di, WANG Chen, ZOU Bingjie, SONG Qinxin, ZHOU Guohua. Research progress of next-generation gene editing tools[J]. Journal of China Pharmaceutical University, 2022, 53(6): 633-642. DOI: 10.11665/j.issn.1000-5048.20220601 |
[1] |
. Science,2022,376(6588):44-53.
|
[2] |
Arnold C. 11 clinical trials that will shape medicine in 2022[J]. Nat Med,2021,27(12):2062-2064.
|
[3] |
Anzalone AV,Koblan LW,Liu DR. Genome editing with CRISPR-Cas nucleases,base editors,transposases and prime editors[J]. Nat Biotechnol,2020,38(7):824-844.
|
[4] |
Geurts AM,Moreno C. Zinc-finger nucleases: new strategies to target the rat genome[J]. Clin Sci,2010,119(8):303-311.
|
[5] |
Joung JK,Sander JD. TALENs:a widely applicable technology for targeted genome editing[J]. Nat Rev Mol Cell Biol,2013,14(1):49-55.
|
[6] |
Pickar-Oliver A,Gersbach CA. The next generation of CRISPR-Cas technologies and applications[J]. Nat Rev Mol Cell Biol,2019,20(8):490-507.
|
[7] |
Kim YG,Cha J,Chandrasegaran S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain[J]. Proc Natl Acad Sci U S A,1996,93(3):1156-1160.
|
[8] |
Li H,Yang Y,Hong W,et al. Applications of genome editing technology in the targeted therapy of human diseases: mechanisms,advances and prospects[J]. Signal Transduct Target Ther,2020,5(1):1-23.
|
[9] |
Becker S,Boch J. TALE and TALEN genome editing technologies[J]. Gene Genome Ed,2021,2:100007.
|
[10] |
D''Souza SS,Kumar A,Weinfurter J,et al. Generation of SIV-resistant T cells and macrophages from nonhuman primate induced pluripotent stem cells with edited CCR5 locus[J]. Stem Cell Reports,2022,17(4):953-963.
|
[11] |
Knott GJ,Doudna JA. CRISPR-Cas guides the future of genetic engineering[J]. Science,2018,361(6405):866-869.
|
[12] |
Cong L,Ran FA,Cox D,et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science,2013,339(6121):819-823.
|
[13] |
Geurts MH,de Poel E,Pleguezuelos-Manzano C,et al. Evaluating CRISPR-based prime editing for cancer modeling and CFTR repair in organoids[J]. Life Sci Alliance,2021,4(10):.1-12.
|
[14] |
Enache OM,Rendo V,Abdusamad M,et al. Cas9 activates the p53 pathway and selects for p53-inactivating mutations[J]. Nat Genet,2020,52(7):662-668.
|
[15] |
Leibowitz ML,Papathanasiou S,Doerfler PA,et al. Chromothripsis as an on-target consequence of CRISPR-Cas9 genome editing[J]. Nat Genet,2021,53(6):895-905.
|
[16] |
Xu S,Kim J,Tang Q,et al. CAS9 is a genome mutator by directly disrupting DNA-PK dependent DNA repair pathway[J]. Protein Cell,2020,11(5):352-365.
|
[17] |
Komor AC,Kim YB,Packer MS,et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J]. Nature,2016,533(7603):420-424.
|
[18] |
Gaudelli NM,Komor AC,Rees HA,et al.Publisher Correction:Programmable base editing of A?T to G?C in genomic DNA without DNA cleavage[J]. Nature,2016,533(7603):420-424.
|
[19] |
Yeh WH,Shubina-Oleinik O,Levy JM,et al. In vivo base editing restores sensory transduction and transiently improves auditory function in a mouse model of recessive deafness[J]. Sci Transl Med,2020,12(546):
|
[20] |
Anzalone AV,Randolph PB,Davis JR,et al. Search-and-replace genome editing without double-strand breaks or donor DNA[J]. Nature,2019,576(7785):149-157.
|
[21] |
Tremblay G,Rousseau J,Mbakam CH,Tremblay JP. Insertion of the icelandic mutation (A673T) by prime editing: a potential preventive treatment for familial and sporadic Alzheimer''s disease[J]. CRISPR J,2022,5(1):109-122.
|
[22] |
Collias D,Beisel CL. CRISPR technologies and the search for the PAM-free nuclease[J]. Nat Commun,2021,12(1):555.
|
[23] |
Zhang X,Zhu B,Chen L,et al. Dual base editor catalyzes both cytosine and adenine base conversions in human cells[J]. Nat Biotechnol,2020,38(7):856-860.
|
[24] |
Grünewald J,Zhou R,Lareau CA,et al. A dual-deaminase CRISPR base editor enables concurrent adenine and cytosine editing[J]. Nat Biotechnol,2020,38(7):861-864.
|
[25] |
Liang Y,Xie J,Zhang Q,et al. AGBE: a dual deaminase-mediated base editor by fusing CGBE with ABE for creating a saturated mutant population with multiple editing patterns[J]. Nucleic Acids Res,2022,50(9):5384-5399.
|
[26] |
Jiang T,Zhang XO,Weng Z,et al. Deletion and replacement of long genomic sequences using prime editing[J]. Nat Biotechnol,2022,40(2):227-234.
|
[27] |
Choi J,Chen W,Suiter CC,et al. Precise genomic deletions using paired prime editing[J]. Nat Biotechnol,2022,40(2):218-226.
|
[28] |
Anzalone AV,Gao XD,Podracky CJ,et al. Programmable deletion,replacement,integration and inversion of large DNA sequences with twin prime editing[J]. Nat Biotechnol,2022,40(5):731-740.
|
[29] |
Zhuang Y,Liu J,Wu H,et al. Increasing the efficiency and precision of prime editing with guide RNA pairs[J]. Nat Chem Biol,2022,18(1):29-37.
|
[30] |
Wang J,He Z,Wang G,et al. Efficient targeted insertion of large DNA fragments without DNA donors[J]. Nat Methods,2022(1):19331-19340.
|
[31] |
Christie KA,Guo JA,Silverstein RA,et al. Precise DNA cleavage using CRISPR-SpRYgests[J]. Nat Biotechnol,2022:1-8.
|
[32] |
Huang TP,Heins ZJ,Miller SM,et al. High-throughput continuous evolution of compact Cas9 variants targeting single-nucleotide-pyrimidine PAMs[J]. Nat Biotechnol,2022:1-12.
|
[33] |
Shi YJ,Duan M,Ding JM,et al. DNA topology regulates PAM-Cas9 interaction and DNA unwinding to enable near-PAMless cleavage by thermophilic Cas9[J]. Mol Cell,2022,82(21):4160-4175.e6.
|
[34] |
Xu S,Cao S,Zou B,et al. An alternative novel tool for DNA editing without target sequence limitation: the structure-guided nuclease[J].Genome Biol,2016,17(1):186.
|
[35] |
Tian K,Guo Y,Zou B,et al. DNA and RNA editing without sequence limitation using the flap endonuclease 1 guided by hairpin DNA probes[J].Nucleic Acids Res,2020,48(20):
|
[36] |
Wu Z,Zhang Y,Yu H,et al. Programmed genome editing by a miniature CRISPR-Cas12f nuclease[J].Nat Chem Biol,2021,17(11):1132-1138.
|
[37] |
Kim DY,Lee JM,Moon SB,et al. Efficient CRISPR editing with a hypercompact Cas12f1 and engineered guide RNAs delivered by adeno-associated virus[J].Nat Biotechnol,2022,40(1):94-102.
|
[38] |
Tsuchida CA,Zhang S,Doost MS,et al. Chimeric CRISPR-CasX enzymes and guide RNAs for improved genome editing activity[J].Mol Cell,2022,82(6):1199-1209.e6.
|
[39] |
Schuler G,Hu C,Ke A. Structural basis for RNA-guided DNA cleavage by IscB-ωRNA and mechanistic comparison with Cas9[J].Science,2022,376(6600):1476-1481.
|
[40] |
Zhi S,Chen Y,Wu G,et al. Dual-AAV delivering split prime editor system for in vivo genome editing[J]. Mol Ther,2022,30(1):283-294.
|
[41] |
Grünewald J,Miller BR,Szalay RN,et al. Engineered CRISPR prime editors with compact,untethered reverse transcriptases[J].Nat Biotechnol,2022:1-7.
|
[42] |
Liu B,Dong X,Cheng H,et al. A split prime editor with untethered reverse transcriptase and circular RNA template[J].Nat Biotechnol,2022,40(9):1388-1393.
|
[43] |
Huang C,Han Z,Evangelopoulos M,et al. CRISPR spherical nucleic acids[J]. J Am Chem Soc,2022,144(41):18756-18760.
|
[1] | WANG Yan, PING Fengfeng, ZHOU Danli, CHEN Yanhua, LING Jingjing. Masitinib alleviated cerebral ischemia/reperfusion injury by inhibiting autophagy and apoptosis[J]. Journal of China Pharmaceutical University, 2021, 52(2): 227-235. DOI: 10.11665/j.issn.1000-5048.20210212 |
[2] | LIU Li, ZHANG Qianwen, NONG Cheng, ZHANG Xi, XU Xiaoting, Mohammed Ismail, XIAO Li, JIANG Zhenzhou, ZHANG Luyong, SUN Lixin. Research progress of lncRNA regulating signal transduction pathway in liver diseases[J]. Journal of China Pharmaceutical University, 2020, 51(3): 277-286. DOI: 10.11665/j.issn.1000-5048.20200304 |
[3] | YANG Rui, ZHU Yi, WANG Yin, MA Wenqi, WANG Xin, HAN Xiqiong, LIU Naifeng. Recent progress in autophagy and vascular calcification[J]. Journal of China Pharmaceutical University, 2018, 49(4): 401-406. DOI: 10.11665/j.issn.1000-5048.20180403 |
[4] | TAN Chengning, HUANG Jinghan, LI Chunhong, XIA Zhining, YANG Fengqing. Applications of proteomics in the study of cell signal pathways[J]. Journal of China Pharmaceutical University, 2017, 48(4): 384-395. DOI: 10.11665/j.issn.1000-5048.20170402 |
[5] | LIU Jing, HUANG Yanwei, ZHOU Bo, SONG Qingqing. Effect of R-(+)-lipoic acid on growth, proliferation and related mechanism in human HepG2 cells[J]. Journal of China Pharmaceutical University, 2017, 48(3): 348-354. DOI: 10.11665/j.issn.1000-5048.20170316 |
[6] | WANG Xue, ZHANG Pinghu. Advances in research on the modulation of autophagy by Ras/Raf/MEK/ERK signaling pathway[J]. Journal of China Pharmaceutical University, 2017, 48(1): 110-116. DOI: 10.11665/j.issn.1000-5048.20170117 |
[7] | MEI Huifang, SUN Lixin, JIANG Zhenzhou, ZHANG Luyong. Sphingosine 1-phosphate signaling pathway:a novel target for regulation of epithelial and endothelial barrier function[J]. Journal of China Pharmaceutical University, 2016, 47(6): 654-660. DOI: 10.11665/j.issn.1000-5048.20160604 |
[8] | SUN Hao, YANG Jiapei, MAO Yong, WANG Dandan, YU Feng. Involvement of Fas-dependent pathway in rhein-induced apoptosis of HK-2 cells[J]. Journal of China Pharmaceutical University, 2015, 46(4): 469-475. DOI: 10.11665/j.issn.1000-5048.20150414 |
[9] | LIU Zhi-yong, NIU Zhi-yuan, ZHENG Wei, SHEN Ping-ping. Effects of p-ERK1/2 on nitric oxide donor induced apoptosis of HepG2 cells[J]. Journal of China Pharmaceutical University, 2012, 43(6): 530-534. |
[10] | Study on the Relationship of Dexamethasone-induced Mouse Thymocytes Apoptosis Process with ERK1/2 MAPK Pathway and Calcium Ion Concentration[J]. Journal of China Pharmaceutical University, 2004, (1): 79-83. |