Citation: | OU Meng, YAN Yinyu, MA Yu, HONG Jin, DING Ya. Nucleic acid drug delivery strategies without the lysosomal pathway[J]. Journal of China Pharmaceutical University, 2023, 54(1): 34-48. DOI: 10.11665/j.issn.1000-5048.20221115001 |
[1] |
. Nat Nanotechnol,2021,16(6):630-643.
|
[2] |
Vargason AM,Anselmo AC,Mitragotri S. The evolution of commercial drug delivery technologies[J]. Nat Biomed Eng,2021,5(9):951-967.
|
[3] |
Kim JM,Shin E,Ryou SM,et al. Gene delivery platforms[J]. Biotechnol Bioproc Eng,2013,18(4):637-647.
|
[4] |
Dutta K,Das R,Medeiros J,et al. Charge-conversion strategies for nucleic acid delivery[J]. Adv Funct Mater,2021,31(24):2011103.
|
[5] |
Fajrial AK,He QQ,Wirusanti NI,et al. A review of emerging physical transfection methods for CRISPR/Cas9-mediated gene editing[J]. Theranostics,2020,10(12):5532-5549.
|
[6] |
Barbier AJ,Jiang AY,Zhang P,et al. The clinical progress of mRNA vaccines and immunotherapies[J]. Nat Biotechnol,2022,40(6):840-854.
|
[7] |
Pei DH,Buyanova M. Overcoming endosomal entrapment in drug delivery[J]. Bioconjugate Chem,2019,30(2):273-283.
|
[8] |
Goswami R,Jeon T,Nagaraj H,et al. Accessing intracellular targets through nanocarrier-mediated cytosolic protein delivery[J]. Trends Pharmacol Sci,2020,41(10):743-754.
|
[9] |
Zorko M,Jones S,Langel ü. Cell-penetrating peptides in protein mimicry and cancer therapeutics[J]. Adv Drug Deliv Rev,2022,180:114044.
|
[10] |
Futaki S,Nakase I. Cell-surface interactions on arginine-rich cell-penetrating peptides allow for multiplex modes of internalization[J]. Acc Chem Res,2017,50(10):2449-2456.
|
[11] |
Stanzl EG,Trantow BM,Vargas JR,et al. Fifteen years of cell-penetrating,guanidinium-rich molecular transporters:basic science,research tools,and clinical applications[J]. Acc Chem Res,2013,46(12):2944-2954.
|
[12] |
Madani F,Lindberg S,Langel U,et al. Mechanisms of cellular uptake of cell-penetrating peptides[J]. J Biophys,2011,2011:414729.
|
[13] |
Kauffman WB,Guha S,WimLey WC. Synthetic molecular evolution of hybrid cell penetrating peptides[J]. Nat Commun,2018,9(1):2568.
|
[14] |
Katayama S,Hirose H,Takayama K,et al. Acylation of octaarginine:implication to the use of intracellular delivery vectors[J]. J Control Release,2011,149(1):29-35.
|
[15] |
Louzao I,García-Fandi?o R,Montenegro J. Hydrazone-modulated peptides for efficient gene transfection[J]. J Mater Chem B,2017,5(23):4426-4434.
|
[16] |
L?ttig-Tünnemann G,Prinz M,Hoffmann D,et al. Backbone rigidity and static presentation of guanidinium groups increases cellular uptake of arginine-rich cell-penetrating peptides[J]. Nat Commun,2011,2:453.
|
[17] |
Herce HD,Schumacher D,Schneider AFL,et al. Cell-permeable nanobodies for targeted immunolabelling and antigen manipulation in living cells[J]. Nat Chem,2017,9(8):762-771.
|
[18] |
Welch JJ,Swanekamp RJ,King C,et al. Functional delivery of siRNA by disulfide-constrained cyclic amphipathic peptides[J]. ACS Med Chem Lett,2016,7(6):584-589.
|
[19] |
Jiang XL,Fu JJ,Zhong JY,et al. Guanidinylated cyclic synthetic polypeptides can effectively deliver siRNA by mimicking the biofunctions of both cell-penetrating peptides and nuclear localization signal peptides[J]. ACS Macro Lett,2021,10(7):767-773.
|
[20] |
Yoo J,Lee D,Gujrati V,et al. Bioreducible branched poly(modified nona-arginine) cell-penetrating peptide as a novel gene delivery platform[J]. J Control Release,2017,246:142-154.
|
[21] |
Sarkar AK,Debnath K,Arora H,et al. Direct cellular delivery of exogenous genetic material and protein via colloidal nano-assemblies with biopolymer[J]. ACS Appl Mater Interfaces,2022,14(2):3199-3206.
|
[22] |
Kang ZY,Liu Q,Zhang ZZ,et al. Arginine-rich polymers with pore-forming capability enable efficient intracellular delivery via direct translocation across cell membrane[J]. Adv Healthc Mater,2022,11(14):
|
[23] |
Gasparini G,Bang EK,Montenegro J,et al. Cellular uptake:lessons from supramolecular organic chemistry[J]. Chem Commun,2015,51(52):10389-10402.
|
[24] |
Yang WH,Yu CM,Wu CX,et al. Cell-penetrating poly(disulfide)-based star polymers for simultaneous intracellular delivery of miRNAs and small molecule drugs[J]. Polym Chem,2017,8(27):4043-4051.
|
[25] |
Guo JJ,Wan T,Li BW,et al. Rational design of poly(disulfide)s as a universal platform for delivery of CRISPR-Cas9 machineries toward therapeutic genome editing[J]. ACS Cent Sci,2021,7(6):990-1000.
|
[26] |
Yu CM,Qian LH,Ge JY,et al. Cell-penetrating poly(disulfide) assisted intracellular delivery of mesoporous silica nanoparticles for inhibition of miR-21 function and detection of subsequent therapeutic effects[J]. Angew Chem Int Ed Engl,2016,55(32):9272-9276.
|
[27] |
Yuan PY,Mao X,Chong KC,et al. Simultaneous imaging of endogenous survivin mRNA and on-demand drug release in live cells by using a mesoporous silica nanoquencher[J]. Small,2017,13(27).
|
[28] |
Zhou J,Sun LQ,Wang LP,et al. Self-assembled and size-controllable oligonucleotide nanospheres for effective antisense gene delivery through an endocytosis-independent pathway[J]. Angew Chem Int Ed Engl,2019,58(16):5236-5240.
|
[29] |
Zhang D,Lin ZG,Wu M,et al. Cytosolic delivery of thiolated neoantigen nano-vaccine combined with immune checkpoint blockade to boost anti-cancer T cell immunity[J]. Adv Sci (Weinh),2021,8(6):2003504.
|
[30] |
Chen CY,Tong YH,Zheng YS,et al. Cytosolic delivery of thiolated Mn-cGAMP nanovaccine to enhance the antitumor immune responses[J]. Small,2021,17(19):
|
[31] |
Marsden HR,Tomatsu I,Kros A. Model systems for membrane fusion[J]. Chem Soc Rev,2011,40(3):1572-1585.
|
[32] |
Kim B,Sun S,Varner JA,et al. Securing the payload,finding the cell,and avoiding the endosome:peptide-targeted,fusogenic porous silicon nanoparticles for delivery of siRNA[J]. Adv Mater,2019,31(35):
|
[33] |
Kim B,Pang HB,Kang J,et al. Immunogene therapy with fusogenic nanoparticles modulates macrophage response to Staphylococcus aureus[J]. Nat Commun,2018,9(1):1969.
|
[34] |
Tan HP,Song YN,Chen J,et al. Platelet-like fusogenic liposome-mediated targeting delivery of miR-21 improves myocardial remodeling by reprogramming macrophages post myocardial ischemia-reperfusion injury[J]. Adv Sci (Weinh),2021,8(15):
|
[35] |
Liu X,Xiang JJ,Zhu DC,et al. Fusogenic reactive oxygen species triggered charge-reversal vector for effective gene delivery[J]. Adv Mater,2016,28(9):1743-1752.
|
[36] |
Xu SJ,Ling SB,Shan QN,et al. Self-activated cascade-responsive sorafenib and USP22 shRNA Co-delivery system for synergetic hepatocellular carcinoma therapy[J]. Adv Sci (Weinh),2021,8(5):2003042.
|
[37] |
Chen XJ,Zhu QW,Xu X,et al. Sequentially site-specific delivery of apoptotic protein and tumor-suppressor gene for combination cancer therapy[J]. Small,2019,15(40):
|
[38] |
Chen NX,He Y,Zang MM,et al. Approaches and materials for endocytosis-independent intracellular delivery of proteins[J]. Biomaterials,2022,286:121567.
|
[39] |
Martens S,McMahon HT. Mechanisms of membrane fusion:disparate players and common principles[J]. Nat Rev Mol Cell Biol,2008,9(7):543-556.
|
[40] |
Wang QZ,Song YN,Chen J,et al. Direct in vivo reprogramming with non-viral sequential targeting nanoparticles promotes cardiac regeneration[J]. Biomaterials,2021,276:121028.
|
[41] |
Wang QQ,Wang HL,Yan HG,et al. Suppression of osteoclast multinucleation via a posttranscriptional regulation-based spatiotemporally selective delivery system[J]. Sci Adv,2022,8(26):
|
[42] |
O''Brien K,Breyne K,Ughetto S,et al. RNA delivery by extracellular vesicles in mammalian cells and its applications[J]. Nat Rev Mol Cell Biol,2020,21(10):585-606.
|
[43] |
Zheng Z,Li ZF,Xu CC,et al. Folate-displaying exosome mediated cytosolic delivery of siRNA avoiding endosome trapping[J]. J Control Release,2019,311/312:43-49.
|
[44] |
Versluis F,Voskuhl J,van Kolck B,et al. In situ modification of plain liposomes with lipidated coiled coil forming peptides induces membrane fusion[J]. J Am Chem Soc,2013,135(21):8057-8062.
|
[45] |
Stengel G,Zahn R,H??k F. DNA-induced programmable fusion of phospholipid vesicles[J]. J Am Chem Soc,2007,129(31):9584-9585.
|
[46] |
Peruzzi JA,Jacobs ML,Vu TQ,et al. Barcoding biological reactions with DNA-functionalized vesicles[J]. Angew Chem Int Ed Engl,2019,58(51):18683-18690.
|
[47] |
Kunisawa J,Masuda T,Katayama K,et al. Fusogenic liposome delivers encapsulated nanoparticles for cytosolic controlled gene release[J]. J Control Release,2005,105(3):344-353.
|
[48] |
Liu HL,Huang LL,Mao MC,et al. Viral protein-pseudotyped and siRNA-electroporated extracellular vesicles for cancer immunotherapy[J]. Adv Funct Mater,2020,30(52):2006515.
|
[49] |
Tai WY,Gao XH. Noncovalent tagging of siRNA with steroids for transmembrane delivery[J]. Biomaterials,2018,178:720-727.
|
[50] |
Tai WY,Zhao PF,Gao XH. Cytosolic delivery of proteins by cholesterol tagging[J]. Sci Adv,2020,6(25):
|
[51] |
Jiang Y,Tang R,Duncan B,et al. Direct cytosolic delivery of siRNA using nanoparticle-stabilized nanocapsules[J]. Angew Chem Int Ed Engl,2015,54(2):506-510.
|
[52] |
Jiang Y,Hardie J,Liu YC,et al. Nanocapsule-mediated cytosolic siRNA delivery for anti-inflammatory treatment[J]. J Control Release,2018,283:235-240.
|
[53] |
Zhang ZH,Cao WG,Jin HL,et al. Biomimetic nanocarrier for direct cytosolic drug delivery[J]. Angew Chem Int Ed Engl,2009,48(48):9171-9175.
|
[54] |
Yang M,Jin HL,Chen J,et al. Efficient cytosolic delivery of siRNA using HDL-mimicking nanoparticles[J]. Small,2011,7(5):568-573.
|
[55] |
Ding Y,Wang YZ,Zhou JP,et al. Direct cytosolic siRNA delivery by reconstituted high density lipoprotein for target-specific therapy of tumor angiogenesis[J]. Biomaterials,2014,35(25):7214-7227.
|
[56] |
Zhao ZY,Liu X,Hou MY,et al. Endocytosis-independent and cancer-selective cytosolic protein delivery via reversible tagging with LAT1 substrate[J]. Adv Mater,2022,34(35):
|
[57] |
Parton RG,Del Pozo MA,Vassilopoulos S,et al. Caveolae:the FAQs[J]. Traffic,2020,21(1):181-185.
|
[58] |
Mashal M,Attia N,Puras G,et al. Retinal gene delivery enhancement by lycopene incorporation into cationic niosomes based on DOTMA and polysorbate 60[J]. J Control Release,2017,254:55-64.
|
[59] |
Qi LY,Wang Y,Hu LF,et al. Enhanced nuclear gene delivery via integrating and streamLining intracellular pathway[J]. J Control Release,2022,341:511-523.
|
[60] |
Qiu C,Han HH,Sun J,et al. Regulating intracellular fate of siRNA by endoplasmic reticulum membrane-decorated hybrid nanoplexes[J]. Nat Commun,2019,10(1):2702.
|
[61] |
Hayer A,Stoeber M,Ritz D,et al. Caveolin-1 is ubiquitinated and targeted to intralumenal vesicles in endolysosomes for degradation[J]. J Cell Biol,2010,191(3):615-629.
|
[62] |
Griffiths G,Gruenberg J,Marsh M,et al. Nanoparticle entry into cells; the cell biology weak link[J]. Adv Drug Deliv Rev,2022,188:114403.
|
[1] | PEI Xin, LI Guideng, CHU Weihua. Progress of proximity labeling technology in membrane protein interaction[J]. Journal of China Pharmaceutical University, 2024, 55(2): 158-166. DOI: 10.11665/j.issn.1000-5048.2023041303 |
[2] | ZHENG Yuting, HONG Tao, XU Kehui, WEN Minghao, YANG Jixue, WU Mengying, HANG Taijun, SONG Min. In vitro release of paclitaxel derivative liposome by paddle membrane binding assay[J]. Journal of China Pharmaceutical University, 2023, 54(6): 743-748. DOI: 10.11665/j.issn.1000-5048.2023041803 |
[3] | XU Jianpei, XU Qunwei, WANG Xiaoqi, XIN Hongliang. Advances in biomimetic drug delivery systems based on platelet and platelet membrane[J]. Journal of China Pharmaceutical University, 2018, 49(6): 653-659. DOI: 10.11665/j.issn.1000-5048.20180603 |
[4] | JI Yibing, DUAN Feifei, HAO Dandan, CHEN Jianqiu. Preparation and application of novel polysulfone chiral membranes for the separation of tryptophan enantiomers[J]. Journal of China Pharmaceutical University, 2017, 48(1): 53-59. DOI: 10.11665/j.issn.1000-5048.20170108 |
[5] | WU Zheng, ZHENG Feng, DING Li. Development of in-vitro evaluation methods to access membrane permeability of drugs[J]. Journal of China Pharmaceutical University, 2011, 42(1): 16-21. |
[6] | Construction of a Novel Fusion Expression Vector[J]. Journal of China Pharmaceutical University, 2000, (2): 65-69. |
[7] | Preparation of Immobilized Antibody Membrane of Acoustic Immunosensor for Determination of Insulin[J]. Journal of China Pharmaceutical University, 1997, (1): 52-55. |
[8] | Study of the Effect of Ligustrazine on Mouse Erythrocyte Membranes[J]. Journal of China Pharmaceutical University, 1994, (3): 166-169. |
[9] | Studies on the Membrane Controlled Release Metoprolol Tablet[J]. Journal of China Pharmaceutical University, 1991, (6): 341-344. |
[10] | PREPARATION AND APPLICATION OF NEOSTIGMINE METHYLSULFATE PVC MEMBRANE SELECTIVE ELECTRODE[J]. Journal of China Pharmaceutical University, 1988, (1): 58-61. |