• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
OU Meng, YAN Yinyu, MA Yu, HONG Jin, DING Ya. Nucleic acid drug delivery strategies without the lysosomal pathway[J]. Journal of China Pharmaceutical University, 2023, 54(1): 34-48. DOI: 10.11665/j.issn.1000-5048.20221115001
Citation: OU Meng, YAN Yinyu, MA Yu, HONG Jin, DING Ya. Nucleic acid drug delivery strategies without the lysosomal pathway[J]. Journal of China Pharmaceutical University, 2023, 54(1): 34-48. DOI: 10.11665/j.issn.1000-5048.20221115001

Nucleic acid drug delivery strategies without the lysosomal pathway

Funds: This study was supported by the National Natural Science Foundation of China (No.31870946,No.32271453), and China Pharmaceutical University Double-First Class Prospective Project (No.CPU2022QZ12)
More Information
  • Received Date: November 14, 2022
  • Revised Date: March 02, 2023
  • By regulating gene expression, nucleic acid drugs functioning in the cytoplasm or nucleus are of great significance in the treatment of acquired or inherited diseases and vaccine development.A variety of nucleic acid delivery vectors currently developed are suffering from low transfection efficiency due to endosome/lysosome entrapment.This paper introduces and summarizes the nucleic acid delivery strategies that bypass the endosomal/lysosomal pathway, including membrane translocation, membrane fusion, receptor/transporter-mediated non-endocytic uptake and caveolae-mediated endocytosis, and discusses the problems and challenges facing such strategies, aiming to facilitate the development of intracellular delivery of nucleic acid drugs bypassing lysosomal pathway.
  • [1]
    . Nat Nanotechnol,2021,16(6):630-643.
    [2]
    Vargason AM,Anselmo AC,Mitragotri S. The evolution of commercial drug delivery technologies[J]. Nat Biomed Eng,2021,5(9):951-967.
    [3]
    Kim JM,Shin E,Ryou SM,et al. Gene delivery platforms[J]. Biotechnol Bioproc Eng,2013,18(4):637-647.
    [4]
    Dutta K,Das R,Medeiros J,et al. Charge-conversion strategies for nucleic acid delivery[J]. Adv Funct Mater,2021,31(24):2011103.
    [5]
    Fajrial AK,He QQ,Wirusanti NI,et al. A review of emerging physical transfection methods for CRISPR/Cas9-mediated gene editing[J]. Theranostics,2020,10(12):5532-5549.
    [6]
    Barbier AJ,Jiang AY,Zhang P,et al. The clinical progress of mRNA vaccines and immunotherapies[J]. Nat Biotechnol,2022,40(6):840-854.
    [7]
    Pei DH,Buyanova M. Overcoming endosomal entrapment in drug delivery[J]. Bioconjugate Chem,2019,30(2):273-283.
    [8]
    Goswami R,Jeon T,Nagaraj H,et al. Accessing intracellular targets through nanocarrier-mediated cytosolic protein delivery[J]. Trends Pharmacol Sci,2020,41(10):743-754.
    [9]
    Zorko M,Jones S,Langel ü. Cell-penetrating peptides in protein mimicry and cancer therapeutics[J]. Adv Drug Deliv Rev,2022,180:114044.
    [10]
    Futaki S,Nakase I. Cell-surface interactions on arginine-rich cell-penetrating peptides allow for multiplex modes of internalization[J]. Acc Chem Res,2017,50(10):2449-2456.
    [11]
    Stanzl EG,Trantow BM,Vargas JR,et al. Fifteen years of cell-penetrating,guanidinium-rich molecular transporters:basic science,research tools,and clinical applications[J]. Acc Chem Res,2013,46(12):2944-2954.
    [12]
    Madani F,Lindberg S,Langel U,et al. Mechanisms of cellular uptake of cell-penetrating peptides[J]. J Biophys,2011,2011:414729.
    [13]
    Kauffman WB,Guha S,WimLey WC. Synthetic molecular evolution of hybrid cell penetrating peptides[J]. Nat Commun,2018,9(1):2568.
    [14]
    Katayama S,Hirose H,Takayama K,et al. Acylation of octaarginine:implication to the use of intracellular delivery vectors[J]. J Control Release,2011,149(1):29-35.
    [15]
    Louzao I,García-Fandi?o R,Montenegro J. Hydrazone-modulated peptides for efficient gene transfection[J]. J Mater Chem B,2017,5(23):4426-4434.
    [16]
    L?ttig-Tünnemann G,Prinz M,Hoffmann D,et al. Backbone rigidity and static presentation of guanidinium groups increases cellular uptake of arginine-rich cell-penetrating peptides[J]. Nat Commun,2011,2:453.
    [17]
    Herce HD,Schumacher D,Schneider AFL,et al. Cell-permeable nanobodies for targeted immunolabelling and antigen manipulation in living cells[J]. Nat Chem,2017,9(8):762-771.
    [18]
    Welch JJ,Swanekamp RJ,King C,et al. Functional delivery of siRNA by disulfide-constrained cyclic amphipathic peptides[J]. ACS Med Chem Lett,2016,7(6):584-589.
    [19]
    Jiang XL,Fu JJ,Zhong JY,et al. Guanidinylated cyclic synthetic polypeptides can effectively deliver siRNA by mimicking the biofunctions of both cell-penetrating peptides and nuclear localization signal peptides[J]. ACS Macro Lett,2021,10(7):767-773.
    [20]
    Yoo J,Lee D,Gujrati V,et al. Bioreducible branched poly(modified nona-arginine) cell-penetrating peptide as a novel gene delivery platform[J]. J Control Release,2017,246:142-154.
    [21]
    Sarkar AK,Debnath K,Arora H,et al. Direct cellular delivery of exogenous genetic material and protein via colloidal nano-assemblies with biopolymer[J]. ACS Appl Mater Interfaces,2022,14(2):3199-3206.
    [22]
    Kang ZY,Liu Q,Zhang ZZ,et al. Arginine-rich polymers with pore-forming capability enable efficient intracellular delivery via direct translocation across cell membrane[J]. Adv Healthc Mater,2022,11(14):e2200371.
    [23]
    Gasparini G,Bang EK,Montenegro J,et al. Cellular uptake:lessons from supramolecular organic chemistry[J]. Chem Commun,2015,51(52):10389-10402.
    [24]
    Yang WH,Yu CM,Wu CX,et al. Cell-penetrating poly(disulfide)-based star polymers for simultaneous intracellular delivery of miRNAs and small molecule drugs[J]. Polym Chem,2017,8(27):4043-4051.
    [25]
    Guo JJ,Wan T,Li BW,et al. Rational design of poly(disulfide)s as a universal platform for delivery of CRISPR-Cas9 machineries toward therapeutic genome editing[J]. ACS Cent Sci,2021,7(6):990-1000.
    [26]
    Yu CM,Qian LH,Ge JY,et al. Cell-penetrating poly(disulfide) assisted intracellular delivery of mesoporous silica nanoparticles for inhibition of miR-21 function and detection of subsequent therapeutic effects[J]. Angew Chem Int Ed Engl,2016,55(32):9272-9276.
    [27]
    Yuan PY,Mao X,Chong KC,et al. Simultaneous imaging of endogenous survivin mRNA and on-demand drug release in live cells by using a mesoporous silica nanoquencher[J]. Small,2017,13(27).doi:10.1002/smLl.201700569.
    [28]
    Zhou J,Sun LQ,Wang LP,et al. Self-assembled and size-controllable oligonucleotide nanospheres for effective antisense gene delivery through an endocytosis-independent pathway[J]. Angew Chem Int Ed Engl,2019,58(16):5236-5240.
    [29]
    Zhang D,Lin ZG,Wu M,et al. Cytosolic delivery of thiolated neoantigen nano-vaccine combined with immune checkpoint blockade to boost anti-cancer T cell immunity[J]. Adv Sci (Weinh),2021,8(6):2003504.
    [30]
    Chen CY,Tong YH,Zheng YS,et al. Cytosolic delivery of thiolated Mn-cGAMP nanovaccine to enhance the antitumor immune responses[J]. Small,2021,17(19):e2102241.
    [31]
    Marsden HR,Tomatsu I,Kros A. Model systems for membrane fusion[J]. Chem Soc Rev,2011,40(3):1572-1585.
    [32]
    Kim B,Sun S,Varner JA,et al. Securing the payload,finding the cell,and avoiding the endosome:peptide-targeted,fusogenic porous silicon nanoparticles for delivery of siRNA[J]. Adv Mater,2019,31(35):e1902952.
    [33]
    Kim B,Pang HB,Kang J,et al. Immunogene therapy with fusogenic nanoparticles modulates macrophage response to Staphylococcus aureus[J]. Nat Commun,2018,9(1):1969.
    [34]
    Tan HP,Song YN,Chen J,et al. Platelet-like fusogenic liposome-mediated targeting delivery of miR-21 improves myocardial remodeling by reprogramming macrophages post myocardial ischemia-reperfusion injury[J]. Adv Sci (Weinh),2021,8(15):e2100787.
    [35]
    Liu X,Xiang JJ,Zhu DC,et al. Fusogenic reactive oxygen species triggered charge-reversal vector for effective gene delivery[J]. Adv Mater,2016,28(9):1743-1752.
    [36]
    Xu SJ,Ling SB,Shan QN,et al. Self-activated cascade-responsive sorafenib and USP22 shRNA Co-delivery system for synergetic hepatocellular carcinoma therapy[J]. Adv Sci (Weinh),2021,8(5):2003042.
    [37]
    Chen XJ,Zhu QW,Xu X,et al. Sequentially site-specific delivery of apoptotic protein and tumor-suppressor gene for combination cancer therapy[J]. Small,2019,15(40):e1902998.
    [38]
    Chen NX,He Y,Zang MM,et al. Approaches and materials for endocytosis-independent intracellular delivery of proteins[J]. Biomaterials,2022,286:121567.
    [39]
    Martens S,McMahon HT. Mechanisms of membrane fusion:disparate players and common principles[J]. Nat Rev Mol Cell Biol,2008,9(7):543-556.
    [40]
    Wang QZ,Song YN,Chen J,et al. Direct in vivo reprogramming with non-viral sequential targeting nanoparticles promotes cardiac regeneration[J]. Biomaterials,2021,276:121028.
    [41]
    Wang QQ,Wang HL,Yan HG,et al. Suppression of osteoclast multinucleation via a posttranscriptional regulation-based spatiotemporally selective delivery system[J]. Sci Adv,2022,8(26):eabn3333.
    [42]
    O''Brien K,Breyne K,Ughetto S,et al. RNA delivery by extracellular vesicles in mammalian cells and its applications[J]. Nat Rev Mol Cell Biol,2020,21(10):585-606.
    [43]
    Zheng Z,Li ZF,Xu CC,et al. Folate-displaying exosome mediated cytosolic delivery of siRNA avoiding endosome trapping[J]. J Control Release,2019,311/312:43-49.
    [44]
    Versluis F,Voskuhl J,van Kolck B,et al. In situ modification of plain liposomes with lipidated coiled coil forming peptides induces membrane fusion[J]. J Am Chem Soc,2013,135(21):8057-8062.
    [45]
    Stengel G,Zahn R,H??k F. DNA-induced programmable fusion of phospholipid vesicles[J]. J Am Chem Soc,2007,129(31):9584-9585.
    [46]
    Peruzzi JA,Jacobs ML,Vu TQ,et al. Barcoding biological reactions with DNA-functionalized vesicles[J]. Angew Chem Int Ed Engl,2019,58(51):18683-18690.
    [47]
    Kunisawa J,Masuda T,Katayama K,et al. Fusogenic liposome delivers encapsulated nanoparticles for cytosolic controlled gene release[J]. J Control Release,2005,105(3):344-353.
    [48]
    Liu HL,Huang LL,Mao MC,et al. Viral protein-pseudotyped and siRNA-electroporated extracellular vesicles for cancer immunotherapy[J]. Adv Funct Mater,2020,30(52):2006515.
    [49]
    Tai WY,Gao XH. Noncovalent tagging of siRNA with steroids for transmembrane delivery[J]. Biomaterials,2018,178:720-727.
    [50]
    Tai WY,Zhao PF,Gao XH. Cytosolic delivery of proteins by cholesterol tagging[J]. Sci Adv,2020,6(25):eabb0310.
    [51]
    Jiang Y,Tang R,Duncan B,et al. Direct cytosolic delivery of siRNA using nanoparticle-stabilized nanocapsules[J]. Angew Chem Int Ed Engl,2015,54(2):506-510.
    [52]
    Jiang Y,Hardie J,Liu YC,et al. Nanocapsule-mediated cytosolic siRNA delivery for anti-inflammatory treatment[J]. J Control Release,2018,283:235-240.
    [53]
    Zhang ZH,Cao WG,Jin HL,et al. Biomimetic nanocarrier for direct cytosolic drug delivery[J]. Angew Chem Int Ed Engl,2009,48(48):9171-9175.
    [54]
    Yang M,Jin HL,Chen J,et al. Efficient cytosolic delivery of siRNA using HDL-mimicking nanoparticles[J]. Small,2011,7(5):568-573.
    [55]
    Ding Y,Wang YZ,Zhou JP,et al. Direct cytosolic siRNA delivery by reconstituted high density lipoprotein for target-specific therapy of tumor angiogenesis[J]. Biomaterials,2014,35(25):7214-7227.
    [56]
    Zhao ZY,Liu X,Hou MY,et al. Endocytosis-independent and cancer-selective cytosolic protein delivery via reversible tagging with LAT1 substrate[J]. Adv Mater,2022,34(35):e2110560.
    [57]
    Parton RG,Del Pozo MA,Vassilopoulos S,et al. Caveolae:the FAQs[J]. Traffic,2020,21(1):181-185.
    [58]
    Mashal M,Attia N,Puras G,et al. Retinal gene delivery enhancement by lycopene incorporation into cationic niosomes based on DOTMA and polysorbate 60[J]. J Control Release,2017,254:55-64.
    [59]
    Qi LY,Wang Y,Hu LF,et al. Enhanced nuclear gene delivery via integrating and streamLining intracellular pathway[J]. J Control Release,2022,341:511-523.
    [60]
    Qiu C,Han HH,Sun J,et al. Regulating intracellular fate of siRNA by endoplasmic reticulum membrane-decorated hybrid nanoplexes[J]. Nat Commun,2019,10(1):2702.
    [61]
    Hayer A,Stoeber M,Ritz D,et al. Caveolin-1 is ubiquitinated and targeted to intralumenal vesicles in endolysosomes for degradation[J]. J Cell Biol,2010,191(3):615-629.
    [62]
    Griffiths G,Gruenberg J,Marsh M,et al. Nanoparticle entry into cells; the cell biology weak link[J]. Adv Drug Deliv Rev,2022,188:114403.
  • Related Articles

    [1]PEI Xin, LI Guideng, CHU Weihua. Progress of proximity labeling technology in membrane protein interaction[J]. Journal of China Pharmaceutical University, 2024, 55(2): 158-166. DOI: 10.11665/j.issn.1000-5048.2023041303
    [2]ZHENG Yuting, HONG Tao, XU Kehui, WEN Minghao, YANG Jixue, WU Mengying, HANG Taijun, SONG Min. In vitro release of paclitaxel derivative liposome by paddle membrane binding assay[J]. Journal of China Pharmaceutical University, 2023, 54(6): 743-748. DOI: 10.11665/j.issn.1000-5048.2023041803
    [3]XU Jianpei, XU Qunwei, WANG Xiaoqi, XIN Hongliang. Advances in biomimetic drug delivery systems based on platelet and platelet membrane[J]. Journal of China Pharmaceutical University, 2018, 49(6): 653-659. DOI: 10.11665/j.issn.1000-5048.20180603
    [4]JI Yibing, DUAN Feifei, HAO Dandan, CHEN Jianqiu. Preparation and application of novel polysulfone chiral membranes for the separation of tryptophan enantiomers[J]. Journal of China Pharmaceutical University, 2017, 48(1): 53-59. DOI: 10.11665/j.issn.1000-5048.20170108
    [5]WU Zheng, ZHENG Feng, DING Li. Development of in-vitro evaluation methods to access membrane permeability of drugs[J]. Journal of China Pharmaceutical University, 2011, 42(1): 16-21.
    [6]Construction of a Novel Fusion Expression Vector[J]. Journal of China Pharmaceutical University, 2000, (2): 65-69.
    [7]Preparation of Immobilized Antibody Membrane of Acoustic Immunosensor for Determination of Insulin[J]. Journal of China Pharmaceutical University, 1997, (1): 52-55.
    [8]Study of the Effect of Ligustrazine on Mouse Erythrocyte Membranes[J]. Journal of China Pharmaceutical University, 1994, (3): 166-169.
    [9]Studies on the Membrane Controlled Release Metoprolol Tablet[J]. Journal of China Pharmaceutical University, 1991, (6): 341-344.
    [10]PREPARATION AND APPLICATION OF NEOSTIGMINE METHYLSULFATE PVC MEMBRANE SELECTIVE ELECTRODE[J]. Journal of China Pharmaceutical University, 1988, (1): 58-61.

Catalog

    Article views (258) PDF downloads (658) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return