• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
CHEN Feihong, ZHAO Deming, GOU Shaohua. Research progress on the antitumor effects of platinum-based chemo-immunotherapies[J]. J China Pharm Univ, 2024, 55(1): 26 − 35. DOI: 10.11665/j.issn.1000-5048.2023120201
Citation: CHEN Feihong, ZHAO Deming, GOU Shaohua. Research progress on the antitumor effects of platinum-based chemo-immunotherapies[J]. J China Pharm Univ, 2024, 55(1): 26 − 35. DOI: 10.11665/j.issn.1000-5048.2023120201

Research progress on the antitumor effects of platinum-based chemo-immunotherapies

Funds: This study was supported by the National Natural Science Foundation of China(No. 21571033,No. 82173852)
More Information
  • Received Date: December 01, 2023
  • Available Online: March 05, 2024
  • As potential immunomodulators, platinum-based drugs could trigger immunogenic cell death (ICD). Hence, combination of platinum-based chemotherapy and immunotherapy could have better synergistic anticancer effect. Pt(II)-based drugs are the most common chemotherapeutic agents in cancer treatment yet with limited clinical application due to their toxic side-effects and drug resistance. Pt(IV) complexes have been widely investigated in the past decades due to their kinetic inertness and unique mechanisms . This article summarizes the progress in the pharmacological activities and mechanisms of Pt(IV) antitumor complexes via introducing different immunomodulators into chemotherapeutic agents in literature over recent years and highlights the potential targets and molecular signaling pathways so as to provide some reference for further development and potential clinical application of platinum-based chemo-immunotherapeutic agents.

  • [1]
    Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012[J]. Int J Cancer, 2015, 136(5): E359-E386.
    [2]
    Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2022[J]. CA Cancer J Clin, 2022, 72(1): 7-33. doi: 10.3322/caac.21708
    [3]
    Vasan N, Baselga J, Hyman DM. A view on drug resistance in cancer[J]. Nature, 2019, 575(7782): 299-309. doi: 10.1038/s41586-019-1730-1
    [4]
    Brown JS, Sundar R, Lopez J. Combining DNA damaging therapeutics with immunotherapy: more haste, less speed[J]. Br J Cancer, 2018, 118(3): 312-324. doi: 10.1038/bjc.2017.376
    [5]
    Wu JJ, Waxman DJ. Immunogenic chemotherapy: dose and schedule dependence and combination with immunotherapy[J]. Cancer Lett, 2018, 419: 210-221. doi: 10.1016/j.canlet.2018.01.050
    [6]
    de Biasi AR, Villena-Vargas J, Adusumilli PS. Cisplatin-induced antitumor immunomodulation: a review of preclinical and clinical evidence[J]. Clin Cancer Res, 2014, 20(21): 5384-5391. doi: 10.1158/1078-0432.CCR-14-1298
    [7]
    Qi LY, Luo Q, Zhang YY, et al. Advances in toxicological research of the anticancer drug cisplatin[J]. Chem Res Toxicol, 2019, 32(8): 1469-1486. doi: 10.1021/acs.chemrestox.9b00204
    [8]
    Konieczkowski DJ, Johannessen CM, Garraway LA. A convergence-based framework for cancer drug resistance[J]. Cancer Cell, 2018, 33(5): 801-815. doi: 10.1016/j.ccell.2018.03.025
    [9]
    Li FP, Luo P, Liu HZ. A potential adjuvant agent of chemotherapy: Sepia ink polysaccharides[J]. Mar Drugs, 2018, 16(4): 106. doi: 10.3390/md16040106
    [10]
    Schulz D, Streller M, Piendl G, et al. Differential localization of PD-L1 and Akt-1 involvement in radioresistant and radiosensitive cell lines of head and neck squamous cell carcinoma[J]. Carcinogenesis, 2020, 41(7): 984-992. doi: 10.1093/carcin/bgz177
    [11]
    Lu DY, Chen EH, Wu HY, et al. Anticancer drug combinations, how far we can go through [J]? Anticancer Agents Med Chem, 2017, 17(1): 21-28.
    [12]
    Shen MJ, Tsai Y, Zhu RY, et al. FASN-TGF-β1-PD-L1 axis contributes to the development of resistance to NK cell cytotoxicity of cisplatin-resistant lung cancer cells[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2018, 1863(3): 313-322.
    [13]
    Hu X, Li FY, Noor N, et al. Platinum drugs: from Pt(II) compounds, Pt(IV) prodrugs, to Pt nanocrystals/nanoclusters[J]. Sci Bull, 2017, 62(8): 589-596. doi: 10.1016/j.scib.2017.03.008
    [14]
    Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade[J]. Science, 2018, 359(6382): 1350-1355. doi: 10.1126/science.aar4060
    [15]
    Huck BR, Kötzner L, Urbahns K. Small molecules drive big improvements in immuno-oncology therapies[J]. Angew Chem Int Ed Engl, 2018, 57(16): 4412-4428. doi: 10.1002/anie.201707816
    [16]
    Chen SH, Chang JY. New insights into mechanisms of cisplatin resistance: from tumor cell to microenvironment[J]. Int J Mol Sci, 2019, 20(17): 4136. doi: 10.3390/ijms20174136
    [17]
    Prendergast GC, Malachowski WJ, Mondal A, et al. Indoleamine 2, 3-dioxygenase and its therapeutic inhibition in cancer[J]. Int Rev Cell Mol Biol, 2018, 336: 175-203.
    [18]
    Italiano A. Future prospects for PD-1 targeting, macrophage infiltration, and IDO pathway activation in patients with sarcomas-reply[J]. JAMA Oncol, 2018, 4(8): 1134-1135.
    [19]
    Du LS, Xing ZK, Tao BB, et al. Both IDO1 and TDO contribute to the malignancy of gliomas via the Kyn-AhR-AQP4 signaling pathway[J]. Signal Transduct Target Ther, 2020, 5(1): 10. doi: 10.1038/s41392-019-0103-4
    [20]
    Wojtaszek JL, Chatterjee N, Najeeb J, et al. A small molecule targeting mutagenic translesion synthesis improves chemotherapy[J]. Cell, 2019, 178(1): 152-159. doi: 10.1016/j.cell.2019.05.028
    [21]
    Platten M, von Knebel Doeberitz N, Oezen I, et al. Cancer immunotherapy by targeting IDO1/TDO and their downstream effectors[J]. Front Immunol, 2014, 5: 673.
    [22]
    van Baren N, Van den Eynde BJ. Tryptophan-degrading enzymes in tumoral immune resistance[J]. Front Immunol, 2015, 6: 34.
    [23]
    Dolusić E, Larrieu P, Moineaux L, et al. Tryptophan 2, 3-dioxygenase (TDO) inhibitors. 3-(2-(pyridyl)ethenyl)indoles as potential anticancer immunomodulators[J]. J Med Chem, 2011, 54(15): 5320-5334. doi: 10.1021/jm2006782
    [24]
    Wu JS, Lin SY, Liao FY, et al. Identification of substituted naphthotriazolediones as novel tryptophan 2, 3-dioxygenase (TDO) inhibitors through structure-based virtual screening[J]. J Med Chem, 2015, 58(19): 7807-7819. doi: 10.1021/acs.jmedchem.5b00921
    [25]
    Sun C, Mezzadra R, Schumacher TN. Regulation and function of the PD-L1 checkpoint[J]. Immunity, 2018, 48(3): 434-452. doi: 10.1016/j.immuni.2018.03.014
    [26]
    Zhang H, You QD, Xu XL. Targeting Stimulator of interferon genes (STING): a medicinal chemistry perspective[J]. J Med Chem, 2020, 63(8): 3785-3816. doi: 10.1021/acs.jmedchem.9b01039
    [27]
    Reisländer T, Groelly FJ, Tarsounas M. DNA damage and cancer immunotherapy: a STING in the tale[J]. Mol Cell, 2020, 80(1): 21-28. doi: 10.1016/j.molcel.2020.07.026
    [28]
    Bracci L, Schiavoni G, Sistigu A, et al. Immune-based mechanisms of cytotoxic chemotherapy: implications for the design of novel and rationale-based combined treatments against cancer[J]. Cell Death Differ, 2014, 21(1): 15-25. doi: 10.1038/cdd.2013.67
    [29]
    Wangpaichitr M, Kandemir H, Li YY, et al. Relationship of metabolic alterations and PD-L1 expression in cisplatin resistant lung cancer[J]. Cell Dev Biol, 2017, 6(2): 183.
    [30]
    Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle[J]. Immunity, 2013, 39(1): 1-10. doi: 10.1016/j.immuni.2013.07.012
    [31]
    Hato SV, Khong A, de Vries IJ, et al. Molecular pathways: the immunogenic effects of platinum-based chemotherapeutics[J]. Clin Cancer Res, 2014, 20(11): 2831-2837. doi: 10.1158/1078-0432.CCR-13-3141
    [32]
    Awuah SG, Zheng YR, Bruno PM, et al. A Pt(IV) pro-drug preferentially targets indoleamine-2, 3-dioxygenase, providing enhanced ovarian cancer immuno-chemotherapy[J]. J Am Chem Soc, 2015, 137(47): 14854-14857. doi: 10.1021/jacs.5b10182
    [33]
    Wang N, Wang ZG, Xu ZF, et al. A cisplatin-loaded immunochemotherapeutic nanohybrid bearing immune checkpoint inhibitors for enhanced cervical cancer therapy[J]. Angew Chem Int Ed, 2018, 57(13): 3426-3430. doi: 10.1002/anie.201800422
    [34]
    Wang QQ, Liu F, Liu L. Prognostic significance of PD-L1 in solid tumor: an updated meta-analysis[J]. Medicine, 2017, 96(18): e6369. doi: 10.1097/MD.0000000000006369
    [35]
    Thoma C. Bladder cancer: Chemotherapy and checkpoint blockade[J]. Nat Rev Urol, 2018, 15(2): 70.
    [36]
    Wong DYQ, Yeo CHF, Ang WH. Immuno-chemotherapeutic platinum(IV) prodrugs of cisplatin as multimodal anticancer agents[J]. Angew Chem Int Ed Engl, 2014, 53(26): 6752-6756. doi: 10.1002/anie.201402879
    [37]
    Hua SX, Chen FH, Wang XY, et al. Pt(IV) hybrids containing a TDO inhibitor serve as potential anticancer immunomodulators[J]. J Inorg Biochem, 2019, 195: 130-140. doi: 10.1016/j.jinorgbio.2019.02.004
    [38]
    Chen FH, Xu G, Tian WY, et al. Breakdown of chemo-immune resistance by a TDO2- targeted Pt(IV) prodrug via attenuating endogenous Kyn-AhR-AQP4 metabolic circuity and TLS-promoted genomic instability[J]. Biochem Pharmacol, 2021, 193: 114785. doi: 10.1016/j.bcp.2021.114785
    [39]
    Hua SX, Chen FH, Xu G, et al. Multifunctional platinum(IV) complexes as immunostimulatory agents to promote cancer immunochemotherapy by inhibiting tryptophan-2, 3-dioxygenase[J]. Eur J Med Chem, 2019, 169: 29-41. doi: 10.1016/j.ejmech.2019.02.063
    [40]
    Jin SX, Muhammad N, Sun YW, et al. Multispecific platinum(IV) complex deters breast cancer via interposing inflammation and immunosuppression as an inhibitor of COX-2 and PD-L1[J]. Angew Chem Int Ed, 2020, 59(51): 23313-23321. doi: 10.1002/anie.202011273
    [41]
    Xiang DQ, Han XL, Li JX, et al. Combination of IDO inhibitors and platinum(IV) prodrugs reverses low immune responses to enhance cancer chemotherapy and immunotherapy for osteosarcoma[J]. Mater Today Bio, 2023, 20: 100675. doi: 10.1016/j.mtbio.2023.100675
    [42]
    Zou XF, Zhao DM, Wen X, et al. NLG-919 combined with cisplatin to enhance inhibitory effect on cell migration and invasion via IDO1-Kyn-AhR pathway in human nasopharyngeal carcinoma cell[J]. Can J Physiol Pharmacol, 2023, 101(11): 599-609. doi: 10.1139/cjpp-2023-0079
  • Related Articles

    [1]ZHANG Yuting, WANG Anhui, YANG Jinni, LIN Jiachun, TIAN Yuan, DONG Haijuan, ZHANG Zunjian, SONG Rui. Mechanisms of cholesterol metabolism imbalance in a PA-induced non-alcoholic fatty liver disease cell model[J]. Journal of China Pharmaceutical University, 2023, 54(4): 490-500. DOI: 10.11665/j.issn.1000-5048.2023032401
    [2]HUANGFU Yifan, RAN Yuye, FENG Shuo, LI Jing. Comparison of bacterial and human drug metabolizing enzymes in database and prospect of influence of intestinal bacteria on drug metabolism[J]. Journal of China Pharmaceutical University, 2023, 54(1): 122-130. DOI: 10.11665/j.issn.1000-5048.20220705001
    [3]ZHANG Ying, WANG Di, ZHANG Pei, ZHANG Zunjian, XU Fengguo. Metabolomic study on the effects of insulin and oleic acid on the development of colon cancer xenografts[J]. Journal of China Pharmaceutical University, 2021, 52(3): 339-345. DOI: 10.11665/j.issn.1000-5048.20210311
    [4]NIU Qun, SUN Qiushuang, QIU Zhixia, HUANG Fang. Progress of SLC13A5 as a potential pharmacological target of metabolic diseases[J]. Journal of China Pharmaceutical University, 2020, 51(5): 607-613. DOI: 10.11665/j.issn.1000-5048.20200513
    [5]GUO Congying, YANG Songlin, WANG Jun, LIAO Weitao, MO Lingfeng, ZHOU Danshui, NI Weiju, ZENG Yu. Regulation mechanism of Compound Yihe Tea on improving insulin resistance in obesity mice[J]. Journal of China Pharmaceutical University, 2020, 51(1): 68-75. DOI: 10.11665/j.issn.1000-5048.20200111
    [6]LI Yongrong, CHENG Tao, WANG Yongsheng, LI Qin, GAO Bo, HE Yun, BAI Yu. Effect of extract of selenium-enriched Astragalus membranaceus on insulin resistance in streptozotocin-induced diabetic rats[J]. Journal of China Pharmaceutical University, 2018, 49(6): 739-745. DOI: 10.11665/j.issn.1000-5048.20180616
    [7]WANG Yiting, ZHAO Mengge, SHENG Xueping, ZHANG Jian, JIANG Cuihua, YIN Zhiqi. Effect of triterpenic acid-enriched fraction from Cyclocarya paliurus on high glucose-induced pancreatic α cells insulin resistance[J]. Journal of China Pharmaceutical University, 2018, 49(2): 215-221. DOI: 10.11665/j.issn.1000-5048.20180212
    [8]ZHANG Xueli, ZHENG Xiao, LIU Yamin, SHAO Hua. Inhibition and mechanism of olanzapine on white adipose tissue beiging in mice[J]. Journal of China Pharmaceutical University, 2015, 46(6): 724-729. DOI: 10.11665/j.issn.1000-5048.20150615
    [9]HE Bi-xia, QIAO Li-yun, PENG Jun, XIE Zhi-ping, DING Qi-long. Effects and mechanisms of mifepristone on insulin-resistant HepG 2 cells[J]. Journal of China Pharmaceutical University, 2011, 42(2): 153-159.
    [10]TAN Li-li, SUN Hong-shuang, XIE Sheng-rong, KONG Shu-jia, WANG Yuan, FU Ji-hua. Combination of high fat-hgih sucrose diet and chronic stress promotes insulin resistance in rats[J]. Journal of China Pharmaceutical University, 2009, 40(4): 380-384.

Catalog

    Article views (907) PDF downloads (65) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return