Citation: | HUANGFU Yifan, RAN Yuye, FENG Shuo, LI Jing. Comparison of bacterial and human drug metabolizing enzymes in database and prospect of influence of intestinal bacteria on drug metabolism[J]. Journal of China Pharmaceutical University, 2023, 54(1): 122-130. DOI: 10.11665/j.issn.1000-5048.20220705001 |
[1] |
. Gastroenterology,2021,160(2):524-537.
|
[2] |
Witkowski M,Weeks TL,Hazen SL. Gut microbiota and cardiovascular disease[J]. Circ Res,2020,127(4):553-570.
|
[3] |
Sepich-Poore GD,Zitvogel L,Straussman R,et al. The microbiome and human cancer[J]. Science,2021,371(6536):
|
[4] |
van den Elsen LWJ,Garssen J,Burcelin R,et al. Shaping the gut microbiota by breastfeeding:the gateway to allergy prevention[J]?Front Pediatr,2019,7:47.
|
[5] |
Generoso JS,Giridharan VV,Lee J,et al. The role of the microbiota-gut-brain axis in neuropsychiatric disorders[J]. Braz J Psychiatry,2021,43(3):293-305.
|
[6] |
Agus A,Clément K,Sokol H. Gut microbiota-derived metabolites as central regulators in metabolic disorders[J]. Gut,2021,70(6):1174-1182.
|
[7] |
Sharpton SR,Schnabl B,Knight R,et al. Current concepts,opportunities,and challenges of gut microbiome-based personalized medicine in nonalcoholic fatty liver disease[J]. Cell Metab,2021,33(1):21-32.
|
[8] |
Vich Vila A,Collij V,Sanna S,et al. Impact of commonly used drugs on the composition and metabolic function of the gut microbiota[J]. Nat Commun,2020,11(1):362.
|
[9] |
Tong XL,Xu J,Lian FM,et al. Structural alteration of gut microbiota during the amelioration of human type 2 diabetes with hyperlipidemia by metformin and a traditional Chinese herbal formula:a multicenter,randomized,open label clinical trial[J]. mBio,2018,9(3):e02392-e02317.
|
[10] |
Qin JJ,Li RQ,Raes J,et al. A human gut microbial gene catalogue established by metagenomic sequencing[J]. Nature,2010,464(7285):59-65.
|
[11] |
Spanogiannopoulos P,Bess EN,Carmody RN,et al. The microbial pharmacists within us:a metagenomic view of xenobiotic metabolism[J]. Nat Rev Microbiol,2016,14(5):273-287.
|
[12] |
Guthrie L,Gupta S,Daily J,et al. Human microbiome signatures of differential colorectal cancer drug metabolism[J]. NPJ Biofilms Microbiomes,2017,3:27.
|
[13] |
van Kessel SP,Frye AK,El-Gendy AO,et al. Gut bacterial tyrosine decarboxylases restrict levels of levodopa in the treatment of Parkinson''s disease[J]. Nat Commun,2019,10(1):310.
|
[14] |
Maini Rekdal V,Bess EN,Bisanz JE,et al. Discovery and inhibition of an interspecies gut bacterial pathway for Levodopa metabolism[J]. Science,2019,364(6445):
|
[15] |
Maier LS,Pruteanu M,Kuhn M,et al. Extensive impact of non-antibiotic drugs on human gut bacteria[J]. Nature,2018,555(7698):623-628.
|
[16] |
Zimmermann M,Zimmermann-Kogadeeva M,Wegmann R,et al. Mapping human microbiome drug metabolism by gut bacteria and their genes[J]. Nature,2019,570(7762):462-467.
|
[17] |
Weersma RK,Zhernakova A,Fu JY. Interaction between drugs and the gut microbiome[J]. Gut,2020,69(8):1510-1519.
|
[18] |
Clarke G,Sandhu KV,Griffin BT,et al. Gut reactions:breaking down xenobiotic-microbiome interactions[J]. Pharmacol Rev,2019,71(2):198-224.
|
[19] |
Klünemann M,Andrejev S,Blasche S,et al. Bioaccumulation of therapeutic drugs by human gut bacteria[J]. Nature,2021,597(7877):533-538.
|
[20] |
Uechi K,Tada T,Sawachi Y,et al. A carbapenem-resistant clinical isolate of Aeromonas hydrophila in Japan harbouring an acquired gene encoding GES-24 β-lactamase[J]. J Med Microbiol,2018,67(11):1535-1537.
|
[21] |
Dingsdag SA,Hunter N. Metronidazole:an update on metabolism,structure-cytotoxicity and resistance mechanisms[J]. J Antimicrob Chemother,2018,73(2):265-279.
|
[22] |
Boddu RS,Perumal O,Divakar K. Microbial nitroreductases:a versatile tool for biomedical and environmental applications[J]. Biotechnol Appl Biochem,2021,68(6):1518-1530.
|
[23] |
Day MA,Jarrom D,Christofferson AJ,et al. The structures of E. coli NfsA bound to the antibiotic nitrofurantoin; to 1,4-benzoquinone and to FMN[J]. Biochem J,2021,478(13):2601-2617.
|
[24] |
Mao BY,Li DY,Zhao JX,et al. In vitro fermentation of lactulose by human gut bacteria[J]. J Agric Food Chem,2014,62(45):10970-10977.
|
[25] |
Wang PP,Jia YF,Wu RR,et al. Human gut bacterial β-glucuronidase inhibition:an emerging approach to manage medication therapy[J]. Biochem Pharmacol,2021,190:114566.
|
[26] |
Kumar K,Dhoke GV,Sharma AK,et al. Mechanistic elucidation of amphetamine metabolism by tyramine oxidase from human gut microbiota using molecular dynamics simulations[J]. J Cell Biochem,2019,120(7):11206-11215.
|
[27] |
Haiser HJ,Seim KL,Balskus EP,et al. Mechanistic insight into digoxin inactivation by Eggerthella lenta augments our understanding of its pharmacokinetics[J]. Gut Microbes,2014,5(2):233-238.
|
[28] |
Gomes AC,Hoffmann C,Mota JF. The human gut microbiota:metabolism and perspective in obesity[J]. Gut Microbes,2018,9(4):308-325.
|
[29] |
Wang QW,Ma BB,Fushinobu S,et al. Regio- and stereoselective hydroxylation of testosterone by a novel cytochrome P450 154C2 from Streptomyces avermitilis[J]. Biochem Biophys Res Commun,2020,522(2):355-361.
|
[30] |
Rabelo-Fernandez RJ,Santiago-Morales K,Morales-Vale L,et al. The metagenome of Caracolus marginella gut microbiome using culture independent approaches and shotgun sequencing[J]. Data Brief,2018,16:501-505.
|
[31] |
Crouwel F,Buiter HJC,de Boer NK. Gut microbiota-driven drug metabolism in inflammatory bowel disease[J]. J Crohns Colitis,2020,15(2):307-315.
|
[32] |
Yan A,Culp E,Perry J,et al. Transformation of the anticancer drug doxorubicin in the human gut microbiome[J]. ACS Infect Dis,2018,4(1):68-76.
|
[33] |
Yang GY,Ge SF,Singh R,et al. Glucuronidation:driving factors and their impact on glucuronide disposition[J]. Drug MeTable Rev,2017,49(2):105-138.
|
[34] |
Lee SH,Choi N,Sung JH. Pharmacokinetic and pharmacodynamic insights from microfluidic intestine-on-a-chip models[J]. Expert Opin Drug MeTable Toxicol,2019,15(12):1005-1019.
|
[35] |
Sun PN,Zhou XL,Farnworth SL,et al. Modeling human liver biology using stem cell-derived hepatocytes[J]. Int J Mol Sci,2013,14(11):22011-22021.
|
[36] |
Lee SY,Kim D,Lee SH,et al. Microtechnology-based in vitro models:Mimicking liver function and pathophysiology[J]. APL Bioeng,2021,5(4):
|
[37] |
Chen SL,Li Z,Zhang SY,et al. Emerging biotechnology applications in natural product and synthetic pharmaceutical analyses[J]. Acta Pharm Sin B,2022,12(11):4075-4097.
|
[38] |
Xie RP,Li JH,Wang JW,et al. DeepVF:a deep learning-based hybrid framework for identifying virulence factors using the stacking strategy[J]. Brief Bioinform,2021,22(3):
|
[39] |
Zhang Z,Zhang Q,Wang T,et al. Assessment of global health risk of antibiotic resistance genes[J]. Nat Commun,2022,13(1):1553.
|
[40] |
Kataria R,Khatkar A. Molecular docking,synthesis,kinetics study,structure-activity relationship and ADMET analysis of morin analogous as Helicobacter pylori urease inhibitors[J]. BMC Chem,2019,13(1):45.
|
[41] |
Jumper J,Evans R,Pritzel A,et al. Highly accurate protein structure prediction with AlphaFold[J]. Nature,2021,596(7873):583-589.
|
[42] |
McCoubrey LE,Thomaidou S,Elbadawi M,et al. Machine learning predicts drug metabolism and bioaccumulation by intestinal microbiota[J]. Pharmaceutics,2021,13(12):2001.
|
[43] |
McCoubrey LE,Elbadawi M,Orlu M,et al. Machine learning uncovers adverse drug effects on intestinal bacteria[J]. Pharmaceutics,2021,13(7):1026.
|
[44] |
Zimmermann M,Zimmermann-Kogadeeva M,Wegmann R,et al. Separating host and microbiome contributions to drug pharmacokinetics and toxicity[J]. Science,2019,363(6427):
|
[1] | ZHANG Zhixing, DENG Hua, TANG Yun. Applications and challenges of artificial intelligence in the development of anticancer peptides[J]. Journal of China Pharmaceutical University, 2024, 55(3): 347-356. DOI: 10.11665/j.issn.1000-5048.2024040201 |
[2] | HU Zi’ang, GAO Liming, YU Wenying. Advances in the application of artificial intelligence in nucleic acid drug development[J]. Journal of China Pharmaceutical University, 2024, 55(3): 335-346. DOI: 10.11665/j.issn.1000-5048.2024033101 |
[3] | ZENG Hao, WU Guozhen, ZOU Wuxin, WANG Zhe, SONG Jianfei, SHI Hui, WANG Xiaojian, HOU Tingjun, DENG Yafeng. Optimization of Menin inhibitors based on artificial intelligence-driven molecular factory technology[J]. Journal of China Pharmaceutical University, 2024, 55(3): 326-334. DOI: 10.11665/j.issn.1000-5048.2024040904 |
[4] | TANG qian, CHEN Roufen, SHEN Zheyuan, CHI Xinglong, CHE Jinxin, DONG Xiaowu. Research progress of artificial intelligence-based small molecule generation models in drug discovery[J]. Journal of China Pharmaceutical University, 2024, 55(3): 295-305. DOI: 10.11665/j.issn.1000-5048.2024031501 |
[5] | PU Chengtao, GU Lingqian, CHEN Xingye, ZHANG Yanmin. Prediction of human intestinal absorption properties based on artificial intelligence[J]. Journal of China Pharmaceutical University, 2023, 54(3): 355-362. DOI: 10.11665/j.issn.1000-5048.2023032102 |
[6] | XUE Feng, FENG Shuo, LI Jing. Application and prospect of artificial intelligence in antimicrobial peptides screening[J]. Journal of China Pharmaceutical University, 2023, 54(3): 314-322. DOI: 10.11665/j.issn.1000-5048.2023030901 |
[7] | GU Zhihao, GUO Wenhao, YAO Hequan, LI Xuanyi, LIN Kejiang. Research progress of the screening and generation of lead compounds based on artificial intelligence model[J]. Journal of China Pharmaceutical University, 2023, 54(3): 294-304. DOI: 10.11665/j.issn.1000-5048.2023042201 |
[8] | YU Zehao, ZHANG Leiming, ZHANG Mengna, DAI Zhiqi, PENG Chengbin, ZHENG Siming. Artificial intelligence-based drug development: current progress and future challenges[J]. Journal of China Pharmaceutical University, 2023, 54(3): 282-293. DOI: 10.11665/j.issn.1000-5048.2023041003 |
[9] | WANG Chao, XIAO Fu, LI Miaozhu, PAN Ying, DING Xiao, REN Feng, ZHAVORONKOV Alex, WANG Yazhou. Application progress of artificial intelligence in the screening and identification of drug targets[J]. Journal of China Pharmaceutical University, 2023, 54(3): 269-281. DOI: 10.11665/j.issn.1000-5048.2023041102 |
[10] | YAN Fangrong. Application and advance of artificial intelligence in biomedical field[J]. Journal of China Pharmaceutical University, 2023, 54(3): 263-268. DOI: 10.11665/j.issn.1000-5048.2023030304 |