• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
LIU Yupeng, SHI Songshan, BU Yingxuan, et al. Advances in the preparation and structural characterization of rhamnogalacturonan II[J]. J China Pharm Univ, 2024, 55(4): 432 − 442. DOI: 10.11665/j.issn.1000-5048.2024040202
Citation: LIU Yupeng, SHI Songshan, BU Yingxuan, et al. Advances in the preparation and structural characterization of rhamnogalacturonan II[J]. J China Pharm Univ, 2024, 55(4): 432 − 442. DOI: 10.11665/j.issn.1000-5048.2024040202

Advances in the preparation and structural characterization of rhamnogalacturonan II

Funds: This study was supported by the Natural Science Foundation of Shanghai(No.21ZR1462900),the National Natural Science Foundation of China(No.82274078,No.U23A20512), and Shanghai Oriental Talent Program for Youth
More Information
  • Received Date: April 01, 2024
  • Rhamnogalacturonan II (RG-II) is one of the structural domains of pectin whose structure is highly conserved among species. The main chain of RG-II consists of approximately nine galacturonic acids linked by α-1,4 glycosidic bonds, with six well-defined side chains replacing them (A−F). The structures of the disaccharide side chains C and D and the monosaccharide side chains E and F in RG-II from different sources remain essentially the same. In contrast, the oligosaccharide side chains A and B showed slight variability. Structural characterization of RG-II can be achieved by molecular weight, monosaccharide composition, and mass spectrometry. The polysaccharides containing RG-II structural domains in traditional Chinese medicines (TCMs) have high medicinal value. Isolation of RG-II can be achieved using endo-polygalacturonase (Endo-PG) and Penicillium oxalicum. A substantial number of RG-II standards can be rapidly prepared from red wine for the development of new quantitative methods to realize the quality control of active polysaccharides from traditional Chinese medicines and to promote the research process of polysaccharides from traditional Chinese medicines.

  • [1]
    Yuan D, Li C, Huang Q, et al. Current advances in the anti-inflammatory effects and mechanisms of natural polysaccharides[J]. Crit Rev Food Sci Nutr, 2023, 63(22): 5890-5910. doi: 10.1080/10408398.2022.2025535
    [2]
    Zeng FS, Yao YF, Wang LF, et al. Polysaccharides as antioxidants and prooxidants in managing the double-edged sword of reactive oxygen species[J]. Biomedecine Pharmacother, 2023, 159: 114221. doi: 10.1016/j.biopha.2023.114221
    [3]
    Khan S, Hussain A, Attar F, et al. A review of the berberine natural polysaccharide nanostructures as potential anticancer and antibacterial agents[J]. Biomedecine Pharmacother, 2022, 146: 112531. doi: 10.1016/j.biopha.2021.112531
    [4]
    Liu XF, Luo DH, Guan JJ, et al. Mushroom polysaccharides with potential in anti-diabetes: biological mechanisms, extraction, and future perspectives: a review[J]. Front Nutr, 2022, 9: 1087826. doi: 10.3389/fnut.2022.1087826
    [5]
    Zhao DP, Chen XH, Wang LY, et al. Bidirectional and persistent immunomodulation of Astragalus polysaccharide as an adjuvant of influenza and recombinant SARS-CoV-2 vaccine[J]. Int J Biol Macromol, 2023, 234: 123635. doi: 10.1016/j.ijbiomac.2023.123635
    [6]
    Li X, Wei ZL, Wang XY, et al. Premna microphylla Turcz leaf pectin exhibited antioxidant and anti-inflammatory activities in LPS-stimulated RAW 264.7 macrophages[J]. Food Chem, 2021, 349: 129164.
    [7]
    Pak U, Cheng H, Liu XB, et al. Structural characterization and anti-oxidation activity of pectic polysaccharides from Swertia mileensis[J]. Int J Biol Macromol, 2023, 248: 125896. doi: 10.1016/j.ijbiomac.2023.125896
    [8]
    Darvill AG, McNeil M, Albersheim P. Structure of plant cell walls: VIII. A new pectic polysaccharide[J]. Plant Physiol, 1978, 62(3): 418-422. doi: 10.1104/pp.62.3.418
    [9]
    O’Neill MA, Ishii T, Albersheim P, et al. Rhamnogalacturonan II: structure and function of a borate cross-linked cell wall pectic polysaccharide[J]. Annu Rev Plant Biol, 2004, 55: 109-139. doi: 10.1146/annurev.arplant.55.031903.141750
    [10]
    Pérez S, Rodríguez-Carvajal MA, Doco T. A complex plant cell wall polysaccharide: rhamnogalacturonan II. A structure in quest of a function[J]. Biochimie, 2003, 85(1/2): 109-121.
    [11]
    Atmodjo MA, Hao ZY, Mohnen D. Evolving views of pectin biosynthesis[J]. Annu Rev Plant Biol, 2013, 64: 747-779. doi: 10.1146/annurev-arplant-042811-105534
    [12]
    Begum RA, Fry SC. Boron bridging of rhamnogalacturonan-II in Rosa and Arabidopsis cell cultures occurs mainly in the endo-membrane system and continues at a reduced rate after secretion[J]. Ann Bot, 2022, 130(5): 703-715. doi: 10.1093/aob/mcac119
    [13]
    Su J, Liu XY, Li HQ, et al. Hypoglycaemic effect and mechanism of an RG-Ⅱ type polysaccharide purified from Aconitum coreanum in diet-induced obese mice[J]. Int J Biol Macromol, 2020, 149: 359-370. doi: 10.1016/j.ijbiomac.2020.01.209
    [14]
    Park HR, Hwang D, Suh HJ, et al. Antitumor and antimetastatic activities of rhamnogalacturonan-II-type polysaccharide isolated from mature leaves of green tea via activation of macrophages and natural killer cells[J]. Int J Biol Macromol, 2017, 99: 179-186. doi: 10.1016/j.ijbiomac.2017.02.043
    [15]
    Park HR, Park SB, Hong HD, et al. Structural elucidation of anti-metastatic rhamnogalacturonan II from the pectinase digest of Citrus peels (Citrus unshiu)[J]. Int J Biol Macromol, 2017, 94 (Pt A): 161-169.
    [16]
    Zhao XH, Ebert B, Zhang BC, et al. UDP-Api/UDP-Xyl synthases affect plant development by controlling the content of UDP-Api to regulate the RG-II-borate complex[J]. Plant J, 2020, 104(1): 252-267. doi: 10.1111/tpj.14921
    [17]
    Begum RA, Fry SC. Arabinogalactan-proteins as boron-acting enzymes, cross-linking the rhamnogalacturonan-II domains of pectin[J]. Plants, 2023, 12(23): 3921. doi: 10.3390/plants12233921
    [18]
    Matsunaga T, Ishii T, Matsumoto S, et al. Occurrence of the primary cell wall polysaccharide rhamnogalacturonan II in pteridophytes, lycophytes, and bryophytes. Implications for the evolution of vascular plants[J]. Plant Physiol, 2004, 134(1): 339-351. doi: 10.1104/pp.103.030072
    [19]
    Ndeh D, Rogowski A, Cartmell A, et al. Complex pectin metabolism by gut bacteria reveals novel catalytic functions[J]. Nature, 2017, 544(7648): 65-70. doi: 10.1038/nature21725
    [20]
    Pabst M, Fischl RM, Brecker L, et al. RhamnogalacturonanII structure shows variation in the side chains monosaccharide composition and methylation status within and across different plant species[J]. Plant J, 2013, 76(1): 61-72. doi: 10.1111/tpj.12271
    [21]
    O’Neill MA, Eberhard S, Albersheim P, et al. Requirement of borate cross-linking of cell wall rhamnogalacturonan II for Arabidopsis growth[J]. Science, 2001, 294(5543): 846-849. doi: 10.1126/science.1062319
    [22]
    Ishii T, Matsunaga T, Pellerin P, et al. The plant cell wall polysaccharide rhamnogalacturonan II self-assembles into a covalently cross-linked dimer[J]. J Biol Chem, 1999, 274(19): 13098-13104. doi: 10.1074/jbc.274.19.13098
    [23]
    Barnes WJ, Koj S, Black IM, et al. Protocols for isolating and characterizing polysaccharides from plant cell walls: a case study using rhamnogalacturonan-II[J]. Biotechnol Biofuels, 2021, 14(1): 142. doi: 10.1186/s13068-021-01992-0
    [24]
    Buffetto F, Ropartz D, Zhang XJ, et al. Recovery and fine structure variability of RGII sub-domains in wine (Vitis vinifera Merlot)[J]. Ann Bot, 2014, 114(6): 1327-1337. doi: 10.1093/aob/mcu097
    [25]
    O’Neill MA, Black I, Urbanowicz B, et al. Locating methyl-etherified and methyl-esterified uronic acids in the plant cell wall pectic polysaccharide rhamnogalacturonan II[J]. SLAS Technol, 2020, 25(4): 329-344. doi: 10.1177/2472630320923321
    [26]
    Gao HS, Ding LL, Liu R, et al. Characterization of Anoectochilus roxburghii polysaccharide and its therapeutic effect on type 2 diabetic mice[J]. Int J Biol Macromol, 2021, 179: 259-269. doi: 10.1016/j.ijbiomac.2021.02.217
    [27]
    Li X, Wei J, Lin LZ, et al. Structural characterization, antioxidant and antimicrobial activities of polysaccharide from Akebia trifoliata (Thunb. ) Koidz stem[J]. Colloids Surf B Biointerfaces, 2023, 231: 113573. doi: 10.1016/j.colsurfb.2023.113573
    [28]
    Xu YB, Wang Q, Chen J, et al. An Arabinogalactan isolated from Pollen Typhae induces the apoptosis of RKO cells by promoting macrophage polarization[J]. Carbohydr Polym, 2023, 299: 120216. doi: 10.1016/j.carbpol.2022.120216
    [29]
    Zhang WX, Hu YH, He JQ, et al. Structural characterization and immunomodulatory activity of a novel polysaccharide from lycopi herba[J]. Front Pharmacol, 2021, 12: 691995. doi: 10.3389/fphar.2021.691995
    [30]
    Wu JJ, Xu YB, Liu XY, et al. Isolation and structural characterization of a non-competitive α-glucosidase inhibitory polysaccharide from the seeds of Litchi chinensis Sonn[J]. Int J Biol Macromol, 2020, 154: 1105-1115. doi: 10.1016/j.ijbiomac.2019.11.170
    [31]
    Xu YB, Chen J, Shi SS, et al. Structure characterization of pectin from the pollen of Typha angustifolia L. and the inhibition activity of lipid accumulation in oleic acid induced L02 cells[J]. Carbohydr Polym, 2023, 303: 120452. doi: 10.1016/j.carbpol.2022.120452
    [32]
    Ni JH, Chen H, Zhang CL, et al. Characterization of Alpinia officinarum Hance polysaccharide and its immune modulatory activity in mice[J]. Food Funct, 2022, 13(4): 2228-2237. doi: 10.1039/D1FO03949K
    [33]
    Yang XH, Liu HH, Yang JT, et al. Purification, structural characterization and immunological activity of Sibiraea laexigata (L. ) Maxim polysaccharide[J]. Front Nutr, 2022, 9: 1013020. doi: 10.3389/fnut.2022.1013020
    [34]
    Hu YB, Hong HL, Liu LY, et al. Analysis of structure and antioxidant activity of polysaccharides from Aralia continentalis[J]. Pharmaceuticals, 2022, 15(12): 1545. doi: 10.3390/ph15121545
    [35]
    Liu JM, Chang WH, Chen ZM, et al. Research progress of pectin and its microbial degradation[J]. Acta Vet Zootechnica Sin (畜牧兽医学报), 2023, 54(7): 2723-2731.
    [36]
    Zablackis E, Huang J, Müller B, et al. Characterization of the cell-wall polysaccharides of Arabidopsis thaliana leaves[J]. Plant Physiol, 1995, 107(4): 1129-1138. doi: 10.1104/pp.107.4.1129
    [37]
    O’Neill MA, Warrenfeltz D, Kates K, et al. Rhamnogalacturonan-II, a pectic polysaccharide in the walls of growing plant cell, forms a dimer that is covalently cross-linked by a borate ester. In vitro conditions for the formation and hydrolysis of the dimer[J]. J Biol Chem, 1996, 271(37): 22923-22930. doi: 10.1074/jbc.271.37.22923
    [38]
    Strasser G. Pectic substances from red beet (Beta vulgaris L. var. conditiva). Part II. Structural characterisation of rhamnogalacturonan II[J]. Carbohydr Polym, 2002, 48(3): 263-269. doi: 10.1016/S0144-8617(01)00257-0
    [39]
    Doco T, Williams P, Vidal S, et al. Rhamnogalacturonan II, a dominant polysaccharide in juices produced by enzymic liquefaction of fruits and vegetables[J]. Carbohydr Res, 1997, 297(2): 181-186. doi: 10.1016/S0008-6215(96)00260-1
    [40]
    Paniagua C, Kirby AR, Gunning AP, et al. Unravelling the nanostructure of strawberry fruit pectins by endo-polygalacturonase digestion and atomic force microscopy[J]. Food Chem, 2017, 224: 270-279. doi: 10.1016/j.foodchem.2016.12.049
    [41]
    Sénéchal F, Wattier C, Rustérucci C, et al. Homogalacturonan-modifying enzymes: structure, expression, and roles in plants[J]. J Exp Bot, 2014, 65(18): 5125-5160. doi: 10.1093/jxb/eru272
    [42]
    Chen E. Nature of sites hydrolyzable by endopolygalacturonase in partially-esterified homogalacturonans[J]. Carbohydr Polym, 1996, 29(2): 129-136. doi: 10.1016/0144-8617(96)00005-7
    [43]
    Ho GT, Zou YF, Wangensteen H, et al. RG-I regions from elderflower pectins substituted on GalA are strong immunomodulators[J]. Int J Biol Macromol, 2016, 92: 731-738. doi: 10.1016/j.ijbiomac.2016.07.090
    [44]
    Qi XD, Yu Y, Wang XY, et al. Structural characterization and anti-oxidation activity evaluation of pectin from Lonicera japonica Thunb[J]. Front Nutr, 2022, 9: 998462. doi: 10.3389/fnut.2022.998462
    [45]
    Chan MK, Yu Y, Wulamu S, et al. Structural analysis of water-soluble polysaccharides isolated from Panax notoginseng[J]. Int J Biol Macromol, 2020, 155: 376-385. doi: 10.1016/j.ijbiomac.2020.03.233
    [46]
    Ning X, Liu Y, Jia MD, et al. Pectic polysaccharides from Radix Sophorae Tonkinensis exhibit significant antioxidant effects[J]. Carbohydr Polym, 2021, 262: 117925. doi: 10.1016/j.carbpol.2021.117925
    [47]
    Yan S, Liu XB, Wang YW, et al. Structural characterization and antioxidant activity of pectic polysaccharides from Veronica peregrina L[J]. Front Nutr, 2023, 10: 1217862. doi: 10.3389/fnut.2023.1217862
    [48]
    Sun L, Ropartz D, Cui LN, et al. Structural characterization of rhamnogalacturonan domains from Panax ginseng C. A. Meyer[J]. Carbohydr Polym, 2019, 203: 119-127. doi: 10.1016/j.carbpol.2018.09.045
    [49]
    Pak U, Yu Y, Ning X, et al. Comparative study of water-soluble polysaccharides isolated from leaves and roots of Isatis indigotica Fort[J]. Int J Biol Macromol, 2022, 206: 642-652. doi: 10.1016/j.ijbiomac.2022.02.187
    [50]
    Soares MMCN, Da Silva R, Carmona EC, et al. Pectinolytic enzyme production by Bacillus species and their potential application on juice extraction[J]. World J Microbiol Biotechnol, 2001, 17(1): 79-82. doi: 10.1023/A:1016667930174
    [51]
    Zhang HX, Jiang XL, Mou HJ, et al. Progress in the study of microbial pectinases [J]. Biotechnology(生物技术), 2005, (5): 92-95.
    [52]
    Lan LJ, Zhou Q, Cai QM, et al. Screening and identification of a high-yield pectinase penicillium strain[J]. J Zhejiang Normal Univ (Nat Sci) [浙江师范大学学报(自然科学版)], 2011, 34(4): 452-456.
    [53]
    Wu D, Cui LN, Yang G, et al. Preparing rhamnogalacturonan II domains from seven plant pectins using Penicillium oxalicum degradation and their structural comparison[J]. Carbohydr Polym, 2018, 180: 209-215. doi: 10.1016/j.carbpol.2017.10.037
    [54]
    Pellerin P, Doco T, Vidal S, et al. Structural characterization of red wine rhamnogalacturonan II[J]. Carbohydr Res, 1996, 290(2): 183-197. doi: 10.1016/0008-6215(96)00139-5
    [55]
    Vidal S, Williams P, Doco T, et al. The polysaccharides of red wine: total fractionation and characterization[J]. Carbohydr Polym, 2003, 54(4): 439-447. doi: 10.1016/S0144-8617(03)00152-8
    [56]
    Lei XQ, Wang SN, Zhao PT, et al. Mannoproteins, arabinogalactan protein, rhamnogalacturonan II and their pairwise combinations regulating wine astringency induced by the interaction of proanthocyanidins and proteins[J]. Int J Biol Macromol, 2023, 224: 950-957. doi: 10.1016/j.ijbiomac.2022.10.180
    [57]
    Brandão E, Silva MS, García-Estévez I, et al. The role of wine polysaccharides on salivary protein-tannin interaction: a molecular approach[J]. Carbohydr Polym, 2017, 177: 77-85. doi: 10.1016/j.carbpol.2017.08.075
    [58]
    Chen GM, Jiang N, Zheng JP, et al. Structural characterization and anti-inflammatory activity of polysaccharides from Astragalus membranaceus[J]. Int J Biol Macromol, 2023, 241: 124386. doi: 10.1016/j.ijbiomac.2023.124386
    [59]
    Zhang X, Yu L, Bi HT, et al. Total fractionation and characterization of the water-soluble polysaccharides isolated from Panax ginseng C. A. Meyer[J]. Carbohydr Polym, 2009, 77(3): 544-552. doi: 10.1016/j.carbpol.2009.01.034
    [60]
    Zhao XL, Meng Y, Liu Y, et al. Pectic polysaccharides from Lilium brownii and Polygonatum odoratum exhibit significant antioxidant effects in vitro[J]. Int J Biol Macromol, 2024, 257(Pt 2): 128830.
    [61]
    Park HR, Shin KS. Structural elucidation of an anti-metastatic polysaccharide from the peels of Korean citrus Hallabong[J]. Carbohydr Polym, 2019, 225: 115222. doi: 10.1016/j.carbpol.2019.115222
    [62]
    York WS, Darvill AG, McNeil M, et al. 3-Deoxy-d-manno-2-octulosonic acid (KDO) is a component of rhamnogalacturonan II, a pectic polysaccharide in the primary cell walls of plants[J]. Carbohydr Res, 1985, 138(1): 109-126. doi: 10.1016/0008-6215(85)85228-9
    [63]
    Spellman MW, McNeil M, Darvill AG, et al. Characterization of a structurally complex heptasaccharide isolated from the pectic polysaccharide rhamnogalacturonan II[J]. Carbohydr Res, 1983, 122(1): 131-153. doi: 10.1016/0008-6215(83)88413-4
    [64]
    Séveno M, Voxeur A, Rihouey C, et al. Structural characterisation of the pectic polysaccharide rhamnogalacturonan II using an acidic fingerprinting methodology[J]. Planta, 2009, 230(5): 947-957. doi: 10.1007/s00425-009-0996-1
    [65]
    Thomas JR, Darvill AG, Albersheim P. Isolation and structural characterization of the pectic polysaccharide rhamnogalacturonan II from walls of suspension-cultured rice cells[J]. Carbohydr Res, 1989, 185(2): 261-277. doi: 10.1016/0008-6215(89)80041-2
    [66]
    Liu W, Xu JN, Zhu R, et al. Fingerprinting profile of polysaccharides from Lycium barbarum using multiplex approaches and chemometrics[J]. Int J Biol Macromol, 2015, 78: 230-237. doi: 10.1016/j.ijbiomac.2015.03.062
    [67]
    He L, Yan XT, Liang J, et al. Comparison of different extraction methods for polysaccharides from Dendrobium officinale stem[J]. Carbohydr Polym, 2018, 198: 101-108. doi: 10.1016/j.carbpol.2018.06.073
    [68]
    Wu DT, Cheong KL, Deng Y, et al. Characterization and comparison of polysaccharides from Lycium barbarum in China using saccharide mapping based on PACE and HPTLC[J]. Carbohydr Polym, 2015, 134: 12-19. doi: 10.1016/j.carbpol.2015.07.052
  • Related Articles

    [1]BAO Ruichu, LI Changsheng, GU Yueqing. Novel oxazine fluorescent dyes for intraoperative neuroimaging[J]. Journal of China Pharmaceutical University, 2022, 53(6): 716-724. DOI: 10.11665/j.issn.1000-5048.20220611
    [2]SHEN Xinxin, ZHANG Yihua, HUANG Zhangjian. Research advances in hydrogen sulfide donors[J]. Journal of China Pharmaceutical University, 2019, 50(3): 265-272. DOI: 10.11665/j.issn.1000-5048.20190302
    [3]ZHANG Yuanyan, XIAO Yunfeng, LI Wenyan, WANG Yuhua. Effects of Roudoukou-8 San against hydrogen peroxide-induced injury of cardiomyocyte[J]. Journal of China Pharmaceutical University, 2018, 49(2): 222-228. DOI: 10.11665/j.issn.1000-5048.20180213
    [4]WANG Shuo, SUN Xiaoyan, CHEN Jinlong. Application of rhodamine-based fluorescent molecular probes in visualization of cellular pyruvic acid[J]. Journal of China Pharmaceutical University, 2018, 49(1): 79-86. DOI: 10.11665/j.issn.1000-5048.20180111
    [5]LI Yuyao, SONG Heng, CHENG Jian, AO Guizhen. Synthesis and biological evaluation of H2S donor ADT-OH derivatives[J]. Journal of China Pharmaceutical University, 2017, 48(3): 276-281. DOI: 10.11665/j.issn.1000-5048.20170304
    [6]SUN Yinxing, WU Ying, SONG Heng, CHENG Jian, AO Guizhen. Synthesis and biological evaluation of H2S donor memantine derivatives[J]. Journal of China Pharmaceutical University, 2016, 47(5): 543-547. DOI: 10.11665/j.issn.1000-5048.20160506
    [7]WANG Xiaoli, WANG Zhaoya, WANG Linna, JI Hui, ZHANG Yihua, YIN Jian. Design, synthesis and evaluation of hydrogen sulfide-releasing derivatives of ring opening 3-n-butylphthalide as novel platelet aggregation inhibitors[J]. Journal of China Pharmaceutical University, 2016, 47(2): 158-162. DOI: 10.11665/j.issn.1000-5048.20160205
    [8]ZHAO Zekai, WANG Lu, XUE Jingwei, ZHANG Can. Development of reduction response probes[J]. Journal of China Pharmaceutical University, 2014, 45(5): 535-539. DOI: 10.11665/j.issn.1000-5048.20140505
    [9]XIAN Wenying, XU Lujie, ZHANG Guangqin. Effects of H2S on tetrodotoxin-sensitive sodium currents in mouse dorsal root ganglion neurons[J]. Journal of China Pharmaceutical University, 2014, 45(1): 97-101. DOI: 10.11665/j.issn.1000-5048.20140118
    [10]Determination of Chemical Stability of Hydrogen Peroxide Dilute Solution by Agar Diffusion Test[J]. Journal of China Pharmaceutical University, 1995, (1): 59-61.

Catalog

    Article views (146) PDF downloads (31) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return