• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
SONG Ke, PAN Hao, HAN Jiayi, CHEN Lijiang. Nano drug delivery system based strategies to target tumor microenvironment[J]. Journal of China Pharmaceutical University, 2018, 49(4): 392-400. DOI: 10.11665/j.issn.1000-5048.20180402
Citation: SONG Ke, PAN Hao, HAN Jiayi, CHEN Lijiang. Nano drug delivery system based strategies to target tumor microenvironment[J]. Journal of China Pharmaceutical University, 2018, 49(4): 392-400. DOI: 10.11665/j.issn.1000-5048.20180402

Nano drug delivery system based strategies to target tumor microenvironment

More Information
  • Tumor occurrence is usually recognized as the interplay between genetic variations within the tumor and the environment. During a long time, great effort has been made in killing cancer cells. However, the role of tumor microenvironment has been largely ignored, which plays an important role in tumor generation, growth, invasion and metastasis. Meanwhile, tumor microenvironment not only facilitates the tumor infiltration, but also promotes the exchange of enzymes and cytokines to aid tumor proliferation, differentiation and self-renewal. Thus, better understanding of tumor microenvironment shows great importance. Recent developments in nanotechnology have brought new approaches to cancer diagnosis and therapy. Nanoparticles were suggested to show enhanced efficacy, while simultaneously reducing side effects and promoting bioavailability, owing to properties such as tumor localization and active cellular uptake. Additionally, nanoparticle surface chemistry has evolved from conventional synthetic polymers to more biologically inspired strategies, including cell membrane and self-recognition peptides, to minimize nonspecific uptake of nanoparticles. In the current review, we highlight the targets in tumor microenvironment and the strategies of nano drug delivery system to target tumor microenvironment for the treatment of cancer. We also highlight design considerations to improve nano drug delivery.
  • [1]
    Hanahan D,Weinberg RA.The hallmarks of cancer[J].Cell,2000,100(1):57-70.
    [2]
    Cai H,Liu YH,Yin TJ,et al.Advances in the targeted therapy of tumor-associated fibroblasts[J].J China Pharm Univ,2018,49(1):20-25.
    [3]
    Han X,QI XL,Wu ZH.Advances in self-assemblied DNA nanocages as drug delivery systems[J].J China Pharm Univ,2017,48(6):663-669.
    [4]
    Liu YH,Zhou JP,Huo MR.Advances in the tumor microenvironment-responsive smart drug delivery nanosystem[J].J China Pharm Univ,2016,47(2):125-133.
    [5]
    Rink JS,Plebanek MP,Tripathy S,et al.Update on current and potential nanoparticle cancer therapies[J].Curr Opin Oncol,2013,25(6):646-651.
    [6]
    Kuperwasser C,Chavarria T,Wu M,et al.Reconstruction of functionally normal and malignant human breast tissues in mice[J].Proc Natl Acad Sci U S A,2004,101(14):4966-4971.
    [7]
    Trédan O,Galmarini CM,Patel K,et al.Drug resistance and the solid tumor microenvironment[J]. J Natl Cancer I,2013,99(19):1441-1454.
    [8]
    Straussman R,Morikawa T,Shee K,et al.Tumor microenvironment induces innate RAF-inhibitor resistance through HGF secretion[J].Nature,2012,487(7408):500-504.
    [9]
    Mueller MM,Fusenig NE.Friends or foes-bipolar effects of the tumour stroma in cancer[J].Nat Rev Cancer,2004,4(11):839-849.
    [10]
    Barenholz Y.Doxil® — The first FDA-approved nano-drug:lessons learned[J].J Control Release,2012,160(2):117-134.
    [11]
    Zhang L,Marrano P,Kumar S,et al.Nab-paclitaxel is an active drug in preclinical model of pediatric solid tumors[J].Clin Cancer Res,2013,19(21):5972-5983.
    [12]
    Silverman JA,Deitcher SR.Marqibo(vincristine sulfate liposome injection)improves the pharmacokinetics and pharmacodynamics of vincristine[J].Cancer Chemoth Pharm,2013,71(3):555-564.
    [13]
    Yuan F,Leunig M,Huang SK,et al.Microvascular permeability and interstitial penetration of sterically stabilized(stealth)liposomes in a human tumor xenograft[J].Cancer Res,1994,54(13):3352-3356.
    [14]
    Wang L,Li C.pH responsive fluorescence nanoprobe imaging of tumors by sensing the acidic microenvironment[J].J Mater Chem,2011,21(40):15862-15871.
    [15]
    Callmann CE, Barback CV, Thompson MP, et al. Therapeutic enzyme-responsive nanoparticles for targeted delivery and accumulation in tumors[J].Adv Mater,2015,27(31):4611-4615.
    [16]
    Wu T,Boyer JC,Barker M,et al.A “Plug-and-Play” method to prepare water-soluble photoresponsive encapsulated upconverting nanoparticles containing hydrophobic molecular switches[J].Chem Mater,2013,25(12):2495-2502.
    [17]
    Goh PP,Sze DM,Roufogalis BD.Molecular and cellular regulators of cancer angiogenesis[J].Curr Cancer Drug Tar,2007,7(8):743-758.
    [18]
    Pàezribes M,Allen E,Hudock J,et al.Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis[J].Cancer Cell,2009,15(3):220-231.
    [19]
    Gu GZ,Hu QY,Feng XY,et al.PEG-PLA nanoparticles modified with APT EDB,peptide for enhanced anti-angiogenic and anti-glioma therapy[J].Biomaterials,2014,35(28):8215-8226.
    [20]
    Ingber D,Fujita T,Kishimoto S,et al.Synthetic analogues of fumagillin that inhibit angiogenesis and suppress tumour growth[J].Nature,1990,348(6301):555-557.
    [21]
    Kudelka AP,Levy T,Verschraegen CF,et al.A phase I study of TNP-470 administered to patients with advanced squamous cell cancer of the cervix[J].Clin Cancer Res,1997,3(9):1501-1505.
    [22]
    Bhargava P,Marshall JL,Rizvi N,et al.A phase I and pharmacokinetic study of TNP-470 administered weekly to patients with advanced cancer[J].Clin Cancer Res,1999,5(8):1989-1995.
    [23]
    Segal E,Pan H,Benayoun L,et al.Enhanced anti-tumor activity and safety profile of targeted nano-scaled HPMA copolymer-alendronate-TNP-470 conjugate in the treatment of bone malignances[J].Biomaterials,2011,32(19):4450-4463.
    [24]
    Shaked Y,Bocci G,Munoz R,et al.Cellular and molecular surrogate markers to monitor targeted and non-targeted antiangiogenic drug activity and determine optimal biologic dose[J].Curr Cancer Drug Tar,2005,5(7):551-559.
    [25]
    Shaked Y,Ciarrocchi A,Franco M,et al.Therapy-induced acute recruitment of circulating endothelial progenitor cells to tumors[J].Science,2006,313(5794):1785-1787.
    [26]
    Schneider M,Tjwa M,Carmeliet P.A surrogate marker to monitor angiogenesis at last [J].Cancer Cell,2005,7(1):3-4.
    [27]
    Navarro P,Bueno M,Zagorac I,et al.Targeting tumor mitochondrial metabolism overcomes resistance to antiangiogenics[J].Cell Rep,2016,15(12):2705-2718.
    [28]
    Lin PP, Gires O, Wang DD, et al. Comprehensive in situ co-detection of aneuploid circulating endothelial and tumor cells[J].Sci Rep,2017,7(1):9789.
    [29]
    Liang JL,Xu W,Yin TJ,et al.Advances in the hypoxia-responsive antitumor drug nanocarrier and tumor hypoxia relieve[J].J China Pharm Univ(中国药科大学学报),2018,49(3):255-262.
    [30]
    Wang K,Li WF,Xing JF,et al.Preliminary assessment of the safety evaluation of novel pH-sensitive hydrogel[J].Eur J Pham Biopharm,2012,82(2):332-339.
    [31]
    Zhang L,Wang Y,Yang Y,et al.High tumor penetration of paclitaxel loaded pH sensitive cleavable liposomes by depletion of tumor collagen I in breast cancer[J].Acs Appl Mater Inter,2015,7(18):9691-9701.
    [32]
    Yu L,Jia Y,Xin W,et al.In vitro and in vivo evaluation of redox-responsive sorafenib carrier nanomicelles synthesized from poly(acryic acid)-cystamine hydrochloride-D-α-tocopherol succinate[J].J Biomat Sci-Polym E,2016,27(17):1729-1747.
    [33]
    Zhu S,Niu M,O′Mary H,et al.Targeting of tumor-associated macrophages made possible by PEG-sheddable,mannose-modified nanoparticles[J].Mol Pharm,2013,10(9):3525-3530.
    [34]
    Weissleder R,Nahrendorf M,Pittet MJ.Imaging macrophages with nanoparticles[J].Nat Mater,2014,13(2):125-138.
    [35]
    Ries CH,Cannarile MA,Hoves S,et al.Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy[J].Cancer Cell,2014,25(6):846-859.
    [36]
    Feig C,Jones JO,Kraman M,et al.Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer[J].Proc Natl Acad Sci U S A,2013,110(50):20212-20217.
    [37]
    Zhang J,Lei M,Guo S,et al.Synergistic anti-tumor effects of combined gemcitabine and cisplatin nanoparticles in a stroma-rich bladder carcinoma model[J].J Control Release,2014,182(1):90-96.
    [38]
    Erez N,Truitt M,Olson P,et al.Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB-dependent manner[J].Cancer Cell,2010,17(2):135-147.
    [39]
    Chen D, Mellman I. Oncology meets immunology: the cancer-immunity cycle[J].Immunity,2013,39(1):1-10.
    [40]
    Wolchok JD,Kluger H,Callahan MK,et al.Nivolumab plus ipilimumab in advanced melanoma[J].New Engl J Med,2013,369(2):122-133.
    [41]
    Luo Z,Wang C,Yi H,et al.Nanovaccine loaded with poly I:C and STAT3 siRNA robustly elicits anti-tumor immune responses through modulating tumor-associated dendritic cells in vivo[J].Biomaterials,2015,38:50-60.
    [42]
    Reddy ST,Vlies AJVD,Simeoni E,et al.Exploiting lymphatic transport and complement activation in nanoparticle vaccines[J].Nat Biotechnol,2007,25(10):1159-1164.
    [43]
    Sagiv-Barfi I,Czerwinski D K,Levy S,et al.Eradication of spontaneous malignancy by local immunotherapy[J].Sci Transl Med,2018,10(426):eaan4488.
    [44]
    Ou Y,Guo XL.Tumor stem cells and drug resistance[J].Prog Physiol Sci(生理科学进展),2007,38(2):115.
    [45]
    Fiorillo M,Verre AF,Iliut M,et al.Graphene oxide selectively targets cancer stem cells,across multiple tumor types:implications for non-toxic cancer treatment,via “differentiation-based nano-therapy”[J].Oncotarget,2015,6(6):3553-3562.
    [46]
    Justilien V,Regala RP,Tseng IC,et al.Matrix metalloproteinase-10 is required for lung cancer stem cell maintenance,tumor initiation and metastatic potential[J].PLos One,2012,7(4):e35040.
    [47]
    Ames E,Canter RJ,Grossenbacher SK,et al.NK cells preferentially target tumor cells with a cancer stem cell phenotype[J].J Immunol,2015,195(8):4010-4019.
    [48]
    Gao L,Wang H,Nan L,et al.Erythrocyte membrane-wrapped pH sensitive polymeric nanoparticles for non-small cell lung cancer therapy[J].Bioconjugate Chem,2017,28(10):2591-2598.
    [49]
    Swami A,Reagan MR,Basto P,et al.Engineered nanomedicine for myeloma and bone microenvironment targeting[J].Proc Natl Acad Sci U S A,2014,111(28):10287-10292.
  • Related Articles

    [1]XU Linhao, LIU Xinze, LIU Wei, XIANG Ping, HANG Taijun, YANG Shuo, YAN Hui. Application of zebrafish model in the metabolism of new psychoactive substances[J]. Journal of China Pharmaceutical University, 2022, 53(5): 606-612. DOI: 10.11665/j.issn.1000-5048.20220511
    [2]CHENG Liyuan, LIU Wei, GUO Xiaoyan, GE Xiaoai, WANG Dingding, WANG Tao. Effects and mechanism of zidovudine on glucolipid metabolic balance in mice[J]. Journal of China Pharmaceutical University, 2022, 53(3): 340-347. DOI: 10.11665/j.issn.1000-5048.20220312
    [3]WANG Jingqi, WANG Ye, ZHANG Yi, LIANG Juncheng, DENG Yanping, HANG Taijun, SONG Min. Metabolomic study on clinical staging of methamphetamine detoxification by LC-QTOF-MS[J]. Journal of China Pharmaceutical University, 2022, 53(3): 314-322. DOI: 10.11665/j.issn.1000-5048.20220309
    [4]HE Mingzhe, PENG Ying, WANG Guangji, A Jiye, ZHENG Yiwen, SUN Jianguo. Mechanism of sodium salicylate-induced damage to HEI-OC1 cells based on metabonomics[J]. Journal of China Pharmaceutical University, 2021, 52(5): 566-572. DOI: 10.11665/j.issn.1000-5048.20210508
    [5]WU Yubing, YIN Lifang, QIN Chao. Clinical application and detection of matrix metalloproteinases in diagnosis[J]. Journal of China Pharmaceutical University, 2020, 51(5): 614-621. DOI: 10.11665/j.issn.1000-5048.20200514
    [6]TAO Yingjun, WU Jie, LIU Chang. Application of proteomics in diabetes and its complications[J]. Journal of China Pharmaceutical University, 2020, 51(3): 368-373. DOI: 10.11665/j.issn.1000-5048.20200315
    [7]YIN Kunpeng, ZHENG Hao, XIE Binxin, LI Ping, ZHANG Lei, FAN Yong, ZHU Wei, QI Lianwen. Clinical metabolomics in diagnosis and therapy of coronary artery disease[J]. Journal of China Pharmaceutical University, 2017, 48(6): 629-634. DOI: 10.11665/j.issn.1000-5048.20170601
    [8]ZHANG Xue, WANG Yuhao, ZHENG Yunsi, HE Hua, LIU Xiaoquan. Evaluation of the protective effect of salvianolic acid A on ischemic heart failure by a multi-target pharmacokinetic-pharmacodynamic model[J]. Journal of China Pharmaceutical University, 2016, 47(5): 587-594. DOI: 10.11665/j.issn.1000-5048.20160514
    [9]LI Chen, YUAN Linhua, MA Xueqin, LIU Xiaoquan, XI Tao. Variation of cardiovascular risk biomarkers in type 2 diabetes mellitus[J]. Journal of China Pharmaceutical University, 2013, 44(3): 257-262. DOI: 10.11665/j.issn.1000-5048.20130314
    [10]HUANG Yin, XU Fengguo, ZHANG Wei, ONG Choonnam, ZHANG Zunjian. Progress for pharmacometabolomics and its applications[J]. Journal of China Pharmaceutical University, 2013, 44(2): 105-112. DOI: 10.11665/j.issn.1000-5048.20130202

Catalog

    Article views (1808) PDF downloads (3026) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return