Citation: | YANG Shan, XU Cheng, YAO Jing. Strategies of nano drug delivery system applied in anti-angiogenic therapy[J]. Journal of China Pharmaceutical University, 2019, 50(1): 11-18. DOI: 10.11665/j.issn.1000-5048.20190102 |
[1] |
Jain RK. Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia[J].Cancer Cell,2014,26(5):605-622.
|
[2] |
Shi J,Kantoff PW,Wooster R,et al.Cancer nanomedicine:progress,challenges and opportunities[J].Nat Rev Cancer,2016,17(1):20-37.
|
[3] |
Folkman J.Tumor angiogenesis:therapeutic implications[J].New Engl J Med,1971,285(21):1182-1186.
|
[4] |
Jain RK.Normalizing tumor microenvironment to treat cancer:bench to bedside to biomarkers[J].J Clin Oncol,2013,31(17):2205-2218.
|
[5] |
Leung DW,Cachianes G,Kuang WJ,et al.Vascular endothelial growth factor is a secreted angiogenic mitogen[J].Science,1989,246(4935):1306-1309.
|
[6] |
Liang X,Xu F,Li X,et al.VEGF signal system:the application of antiangiogenesis[J].Curr Med Chem,2014,21(7):894-910.
|
[7] |
Yang S,Gao H.Nanoparticles for modulating tumor microenvironment to improve drug delivery and tumor therapy[J].Pharmacol Res,2017,126:97-108.
|
[8] |
Lee H,Lee HJ,Bae IJ,et al.Inhibition of STAT3/VEGF/CDK2 axis signaling is critically involved in the antiangiogenic and apoptotic effects of arsenic herbal mixture PROS in non-small lung cancer cells[J].Oncotarget,2017,8(60):101771-101783.
|
[9] |
Ferrara N,Adamis AP.Ten years of anti-vascular endothelial growth factor therapy[J].Nat Rev Drug Discov,2016,15(6):385-403.
|
[10] |
Jayson GC,Kerbel R,Ellis LM,et al.Antiangiogenic therapy in oncology:current status and future directions[J].Lancet,2016,388(10043):518-529.
|
[11] |
Raut CP, Nawrocki S, Lashinger LM, et al. Celecoxib inhibits angiogenesis by inducing endothelial cell apoptosis in human pancreatic tumor xenografts[J].Cancer Biol Ther,2004,3(12):1217-1224.
|
[12] |
Wang X, Shen Y, Li S, et al. Importance of the interaction between immune cells and tumor vasculature mediated by thalidomide in cancer treatment[J].Int J Mol Med,2016,38(4):1021-1029.
|
[13] |
Norrby K.Low-molecular-weight heparins and angiogenesis[J].Apmis,2010,114(2):79-102.
|
[14] |
Xu Y,Wen Z,Xu Z.Chitosan nanoparticles inhibit the growth of human hepatocellular carcinoma xenografts through an antiangiogenic mechanism[J].Anticancer Res,2009,29(12):5103-5109.
|
[15] |
Lim DK,Wylie RG,Langer R,et al.Selective binding of C-6 OH sulfated hyaluronic acid to the angiogenic isoform of VEGF(165)[J].Biomaterials,2016,77:130-138.
|
[16] |
Kim GH,Won JE,Byeon Y,et al.Selective delivery of PLXDC1 small interfering RNA to endothelial cells for anti-angiogenesis tumor therapy using CD44-targeted chitosan nanoparticles for epithelial ovarian cancer[J].Gynecol Endocrinol,2018,25(1):1-5.
|
[17] |
Li Y, Wu Y, Huang L, et al. Sigma receptor-mediated targeted delivery of anti-angiogenic multifunctional nanodrugs for combination tumor therapy[J].J Control Release,2016,228:107-119.
|
[18] |
Xiong H,Wu YY,Jiang ZJ,et al.pH-activatable polymeric nanodrugs enhanced tumor chemo/antiangiogenic combination therapy through improving targeting drug release[J].J Colloid Interf Sci,2019,536:135-148.
|
[19] |
Tian F,Dahmani FZ,Qiao JN,et al.A targeted nanoplatform co-delivering chemotherapeutic and antiangiogenic drugs as a tool to reverse multidrug resistance in breast cancer[J].Acta Biomater,2018,75:398-412.
|
[20] |
Sun F,Yu Y,Yang Z,et al.Hyaluronic acid-endostatin2-alft1(HA-ES2-AF)nanoparticle-like conjugate for the target treatment of diseases[J].J Control Release,2018,288:1-13.
|
[21] |
Ding Y,Ji T,Zhao Y,et al.Improvement of stability and efficacy of C16Y therapeutic peptide via molecular self-assembly into tumor-responsive nanoformulation[J].Mol Cancer Ther,2015,14(10):2390-2400.
|
[22] |
Mukherjee P,Bhattacharya R,Wang P,et al.Antiangiogenic properties of gold nanoparticles[J].Clin Cancer Res,2005,11(9):3530-3534.
|
[23] |
Gurunathan S,Lee KJ,Kalishwaralal K,et al.Antiangiogenic properties of silver nanoparticles[J].Biomaterials,2009,30(31):6341-6350.
|
[24] |
Li X,Wu M,Pan L,et al.Tumor vascular-targeted co-delivery of anti-angiogenesis and chemotherapeutic agents by mesoporous silica nanoparticle-based drug delivery system for synergetic therapy of tumor[J].Int J Nanomed,2016,11(1):93-105.
|
[25] |
Fu X,Yang Y,Li X,et al.RGD peptide-conjugated selenium nanoparticles:antiangiogenesis by suppressing VEGF-VEGFR2-ERK/AKT pathway[J].Nanomedicine,2016,12(6):1627-1639.
|
[26] |
Lai PX,Chen CW,Wei SC,et al.Ultrastrong trapping of VEGF by graphene oxide:anti-angiogenesis application[J].Biomaterials,2016,109:12-22.
|
[27] |
Balakrishnan S,Bhat FA,Raja SP,et al.Gold nanoparticle-conjugated quercetin inhibits epithelial-mesenchymal transition,angiogenesis and invasiveness via EGFR/VEGFR-2-mediated pathway in breast cancer[J].Cell Prolif,2016,49(6):678-697.
|
[28] |
Jiao M,Zhang P,Meng J,et al.Recent advancements in biocompatible inorganic nanoparticles towards biomedical applications[J].Biomater Sci, 2018,6(4):726-745.
|
[29] |
Burrows FJ,Thorpe PE.Eradication of large solid tumors in mice with an immunotoxin directed against tumor vasculature[J].Proc Natl Acad Sci U S A,1993,90(19):8996-9000.
|
[30] |
Kunjachan S,Detappe A,Kumar R,et al.Nanoparticle mediated tumor vascular disruption:a novel strategy in radiation therapy[J].Nano Lett,2015,15(11):7488-7496.
|
[31] |
Gao W,Li S,Liu Z,et al.Targeting and destroying tumor vasculature with a near-infrared laser-activated "nanobomb" for efficient tumor ablation[J].Biomaterials,2017,139:1-11.
|
[32] |
Zhang C,Ni D,Liu Y,et al.Magnesium silicide nanoparticles as a deoxygenation agent for cancer starvation therapy[J].Nat Nanotechnol,2017,12(4):378-386.
|
[33] |
Malamas AS,Jin E,Gujrati M,et al.DCE-MRI assessing the anti-angiogenic effect of silencing HIF-1α with targeted multifunctional ECO/siRNA nanoparticles[J].Mol Pharm,2016,13(7):2497-2506.
|
[34] |
Miao L,Liu Q,Lin CM,et al.Targeting tumor-associated fibroblasts for therapeutic delivery in desmoplastic tumors[J].Cancer Res,2017,77(3):719-731.
|
[35] |
Ruan S,He Q,Gao H.Matrix metalloproteinase triggered size-shrinkable gelatin-gold fabricated nanoparticles for tumor microenvironment sensitive penetration and diagnosis of glioma[J].Nanoscale,2015,7(21):9487-9496.
|
[36] |
Huo M,Zhao Y,Satterlee AB,et al.Tumor-targeted delivery of sunitinib base enhances vaccine therapy for advanced melanoma by remodeling the tumor microenvironment[J].J Control Release,2017,245:81-94.
|
[37] |
Yan L,Gao Y,Pierce R,et al.Development of Y-shaped peptide for constructing nanoparticle systems targeting tumor-associated macrophages in vitro and in vivo[J].Mater Res Express,2014,1(2):025007.
|
[38] |
Finlay J,Roberts CM,Dong J,et al.Mesoporous silica nanoparticle delivery of chemically modified siRNA against TWIST1 leads to reduced tumor burden[J].Nanomedicine,2015,11(7):1657-1666.
|
[39] |
Wang B,Ding Y,Zhao X,et al.Delivery of small interfering RNA against Nogo-B receptor via tumor-acidity responsive nanoparticles for tumor vessel normalization and metastasis suppression[J].Biomaterials,2018,175:110-122.
|
[40] |
Kwak G,Jo SD,Kim D,et al.Synergistic antitumor effects of combination treatment with metronomic doxorubicin and VEGF-targeting RNAi nanoparticles[J].J Control Release,2017,267:203-213.
|
[41] |
Wong PP,Bodrug N,Hodivala-Dilke KM.Exploring novel methods for modulating tumor blood vessels in cancer treatment[J].Curr Biol,2016,26(21):R1161-R1166.
|
[42] |
Ebos JM,Lee CR,Kerbel RS.Tumor and host-mediated pathways of resistance and disease progression in response to antiangiogenic therapy[J].Clin Cancer Res,2009,15(16):5020-5025.
|
[1] | YE Zhenning, WU Zhenghong, ZHANG Huaqing. Research progress of blood-brain barrier crossing strategies and brain-targeted drug delivery mediated by nano-delivery system[J]. Journal of China Pharmaceutical University, 2024, 55(5): 590-602. DOI: 10.11665/j.issn.1000-5048.2024052202 |
[2] | LUO Xuelian, WU Chengsheng, ZHA Cheng, LIU Sheng. Research progress and prospects of implantable drug delivery systems for postoperative tumor therapy[J]. Journal of China Pharmaceutical University, 2024, 55(4): 538-547. DOI: 10.11665/j.issn.1000-5048.2024040901 |
[3] | WANG Shihao, LIU Lifeng, DING Yang, LI Suxin. Research progress of pH-responsive drug delivery systems in cancer immunotherapy[J]. Journal of China Pharmaceutical University, 2024, 55(4): 522-529. DOI: 10.11665/j.issn.1000-5048.2024011902 |
[4] | YU Jiayu, LIN Zezhi, CAO Wei, ZHANG Jianjun, WEI Yuanfeng, GAO Yuan, QIAN Shuai. Research progress of bio-metal organic frameworks in drug delivery system[J]. Journal of China Pharmaceutical University, 2023, 54(1): 23-33. DOI: 10.11665/j.issn.1000-5048.20221111003 |
[5] | ZHOU Yeshu, WANG Yanmei, ZHANG Beiyuan, WU Shuaicong, YANG Lei, YIN Lifang. Research progress of inorganic nanomaterials in drug delivery system[J]. Journal of China Pharmaceutical University, 2020, 51(4): 394-405. DOI: 10.11665/j.issn.1000-5048.20200403 |
[6] | LI Haoxian, LIN Huaqing, CHEN Jingwen, WANG Liyuan. Research progress of carbon nanomaterials in cancer drug delivery[J]. Journal of China Pharmaceutical University, 2019, 50(1): 100-106. DOI: 10.11665/j.issn.1000-5048.20190114 |
[7] | FAN Qianqian, XING Lei, QIAO Jianbin, ZHANG Chenglu, JIANG Hulin. Advances in drug delivery systems for the treatment of liver fibrosis[J]. Journal of China Pharmaceutical University, 2018, 49(3): 263-271. DOI: 10.11665/j.issn.1000-5048.20180302 |
[8] | CHEN Xing, KANG Yang, WU Jun. Advances in biodegradable functional polymers based protein drug delivery system[J]. Journal of China Pharmaceutical University, 2017, 48(2): 142-149. DOI: 10.11665/j.issn.1000-5048.20170203 |
[9] | WANG Yazhe, ZHOU Jianping, DING Yang, WANG Wei. Advances in research of biomimetic drug delivery systems[J]. Journal of China Pharmaceutical University, 2014, 45(3): 267-273. DOI: 10.11665/j.issn.1000-5048.20140303 |
[10] | TANG Yue, KE Xue. Advances of mesoporous silica nanoparticles as drug delivery system[J]. Journal of China Pharmaceutical University, 2012, 43(6): 567-572. |