• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
YU Yinghua, XU Zhimeng, ZENG Hao, NI Rongxing, LI Ping. Advances in the study of relationship between Caspases and innate immunity[J]. Journal of China Pharmaceutical University, 2019, 50(5): 622-630. DOI: 10.11665/j.issn.1000-5048.20190517
Citation: YU Yinghua, XU Zhimeng, ZENG Hao, NI Rongxing, LI Ping. Advances in the study of relationship between Caspases and innate immunity[J]. Journal of China Pharmaceutical University, 2019, 50(5): 622-630. DOI: 10.11665/j.issn.1000-5048.20190517

Advances in the study of relationship between Caspases and innate immunity

More Information
  • Caspases are a group of structurally related cysteine proteases present in cytosol. One of their important common points is that the active sites contain cysteine and can specifically break the peptide bonds after the aspartic acid residues. Caspases are broadly divided into two groups based on their functions, including inflammatory Caspases and apoptotic Caspases. Inflammatory Caspases include Caspase-1, Caspase-4, Caspase-5, Caspase-11 and Caspase-12, which play important roles in the process of innate immune defense. Unlike inflammatory Caspases, apoptotic Caspases(2/3/6/7/8/910)initiate and execute an immunologically silent form of programmed cell death known as apoptosis. However, ongoing investigations have uncovered essential functions of Caspase-8 in the regulation of immunity in cells and organisms. Accumulated studies have shown that Caspases play important roles in the occurrence and development of various immunity-related diseases. In order to comprehensively elucidate the relationship between Caspases and innate immunity, and to provide some scientific basis and theoretical reference for the treatment of various diseases, this article reviews the regulation of activity and inflammation mechanism of innate immunity-related Caspase-1/4/5/11/8/12.
  • [1]
    Takanori K,Daniel AM.The role of inflammasomes in kidney disease[J].Nat Rev Nephrol,2019.doi: 10.1038/s41581-019-0158-z.
    [2]
    Martinon F,Burns K,Tschopp J.The inflammasome:a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta[J].Molecular Cell,2002,10(2):417-426.
    [3]
    Yi YS.Caspase-11 non-canonical inflammasome:a critical sensor of intracellular lipopolysaccharide in macrophage-mediated inflammatory responses[J].Immunology,2017,152(2):207-217.
    [4]
    Man SM,Kanneganti TD.Converging roles of Caspases in inflammasome activation,cell death and innate immunity[J].Nat Rev Immunol,2016,16(1):7-21.
    [5]
    Gurung P,Kanneganti TD.Novel Roles for Caspase-8 in IL-1β and Inflammasome Regulation[J].Am J Pathol,2015,85(1):17-25.
    [6]
    Chen HH,Ning XH,Jiang ZF.Caspases control antiviral innate immunity[J].Cell Mol Immunol,2017,14(9):736-747.
    [7]
    Winsor N,Krustev C,Bruce J,et al.Canonical and non-canonical inflammasomes in intestinal epithelial cells[J].Cell Microbiol,2019.doi: 10.1111/cmi.13079.
    [8]
    He WT,Wan HQ,Hu LC,et al.Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion[J].Cell Res,2015,25(12):1285-1298.
    [9]
    Mitchell PS,Sandstrom A,Vance RE,et al.The NLRP1 inflammasome:new mechanistic insights and unresolved mysteries[J].Curr Opin Immunol,2019,60:37-45.
    [10]
    Minkiewicz J,Vaccari JPD,Keane RW.Human astrocytes express a novel NLRP2 inflammasome[J].Glia,2013,61(7):1113-1121.
    [11]
    Mangan MSJ, Olhava EJ, Roush WR. Targeting the NLRP3 inflammasome in inflammatory diseases[J].Nat Rev Drug Disco,2018,17(8):588-606.
    [12]
    Zhao Y, Shao F. The NAIP-NLRC4 inflammasome in innate immune detection of bacterial flagellin and type III secretion apparatus[J].Nat Rev,2015,265(1):85-102.
    [13]
    Hu ZH, Zhou Q, Zhang CL, et al. Structural and biochemical basis for induced self-propagation of NLRC4[J].Science,2015,350(6259):399-404.
    [14]
    Levy M,Thaiss CA,Zeevi D,et al.Microbiota-modulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling[J].Cell,2015,163(6):1428-1443.
    [15]
    Hara H,Seregin SS,Yang DH,et al.The NLRP6 inflammasome recognizes lipoteichoic acid and regulates gram-positive pathogen infection[J].Cell,2018,175(6):1651-1664.
    [16]
    Zhu S,Ding SY,Wang PH,et al.Nlrp9b inflammasome restricts rotavirus infection in intestinal epithelial cells[J].Nature,2017,546(7660):667-670.
    [17]
    Park YH,Wood G,Kastner DL,et al.Pyrin inflammasome activation and RhoA signaling in the autoinflammatory diseases FMF and HIDS[J].Nat Immunol,2016,17(8):914-921.
    [18]
    Xu H,Yang JL,Gao WQ,et al.Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome[J].Nature,2014,513(7517):237-241.
    [19]
    Lugrin J,Martinon F.The AIM2 inflammasome:Sensor of pathogens and cellular perturbations[J].Immunol Rev,2018,281(1):99-114.
    [20]
    Kerur N, Veettil MV, Sharma-Walia N, et al. IFI16 acts as a nuclear pathogen sensor to induce the inflammasome in response to Kaposi Sarcoma-associated herpesvirus infection[J].Cell Host Microbe,2011,9(5):363-375.
    [21]
    Elinav E,Strowig T,Henao-Mejia J,et al.Regulation of the antimicrobial response by NLR proteins[J].Immunity,2011,34(5):665-679.
    [22]
    Cordero MD,Williams MR,Ryffel B.AMP-activated protein kinase regulation of the NLRP3 inflammasome during aging[J].Trends Endocrin Met,2018,29(1):8-17.
    [23]
    Gong T,Yang YQ,Jin TC,et al.Orchestration of NLRP3 inflammasome activation by ion fluxes[J].Trends Immunol,2018,39(5):393-406.
    [24]
    He Y,Zeng MY,YangD,et al.NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux[J].Nature,2016,530(7590):354-357.
    [25]
    Liu QY,Zhang DY,Hu DY,et al.The role of mitochondria in NLRP3 inflammasome activation[J].Mol Immunol,2018,469:115-124.
    [26]
    Gaidt MM,Ebert TS,Chauhan D,et al.The DNA inflammasome in human myeloid cells is initiated by a STING-cell death program upstream of NLRP3[J].Cell,2017,171(5):1110-1124.
    [27]
    He Y,Hara H,Núñez G.Mechanism and regulation of NLRP3 inflammasome activation[J].Trends Biochem Sci,2016,41(12):S0968000416301487.
    [28]
    Levinsohn JL,Newman ZL,Hellmich KA,et al.Anthrax lethal factor cleavage of Nlrp1 is required for activation of the inflammasome[J].PLoS Pathog,2012,8(3):e002638.
    [29]
    Sandstrom A,Mitchell PS,Goers L,et al.Functional degradation:A mechanism of NLRP1 inflammasome activation by diverse pathogen enzymes[J].Science,2019,364(6435):eaau1330.
    [30]
    Chui AJ,Okondo MC,Rao SD,et al.N-terminal degradation activates the NLRP1B inflammasome[J].Science,2019,364(6435):82-85.
    [31]
    Rathinam VAK,Zhao Y,Shao F.Innate immunity to intracellular LPS[J].Nat Immunol,2019,20:527-533.
    [32]
    Liu X,Zhang ZB,Ruan JB,et al.Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores[J].Nature,2016,535(7610):153-158.
    [33]
    Vanaja SK,Russo AJ,Behl B,et al.Bacterial outer membrane vesicles mediate cytosolic localization of LPS and Caspase-11 activation[J].Cell,2016,165(5):1106-1119.
    [34]
    Kayagaki N,Stowe IB,Lee BL,et al.Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling[J].Nature,2015,526(7575):666-671.
    [35]
    Ding JJ,Shao F.Snapshot:the noncanonical inflammasome[J].Cell,2017,168(3):544-544.
    [36]
    Ruehl S,Broz P.Caspase-11 activates a canonical NLRP3 inflammasome by promoting K+ efflux[J].Eur J Immunol,2015,45(10):2927-2936.
    [37]
    Zanoni I,Tan YH,Di Gioia M,et al.An endogenous Caspase-11 ligand elicits interleukin-1 release from living dendritic cells[J].Science,2016,352(6290):1232-1236.
    [38]
    Chu LH,Indramohan M,Ratsimandresy RA,et al.The oxidized phospholipid oxPAPC protects from septic shock by targeting the non-canonical inflammasome in macrophages[J].Nat Commun,2018,9(1):996.
    [39]
    DeLaney AA,Berry CT,Christian DA,et al.Caspase-8 promotes c-Rel-dependent inflammatory cytokine expression and resistance against Toxoplasma gondii[J].Proc Natl Acad Sci U S A,2019,116(24):11926-11935.
    [40]
    Orning P,Weng D,Starheim K,et al.Pathogen blockade of TAK1 triggers Caspase-8-dependent cleavage of gasdermin D and cell death[J].Science,2018,362(6418):1064-1069.
    [41]
    Sarhan J,Liu BC,Muendlein HI,et al.Caspase-8 induces cleavage of gasdermin D to elicit pyroptosis during Yersinia infection[J].Proc Natl Acad Sci U S A,2018,115(46):E10888-E10897.
    [42]
    Kang TB,Yang SH,Toth B,et al.Caspase-8 blocks kinase RIPK3-mediated activation of the NLRP3 inflammasome[J].Immunity,2013,38(1):27-40.
    [43]
    Tummers B,Green DR.Caspase-8:regulating life and death[J].Immunol Rev,2017,77(1):76-89.
    [44]
    Maelfait J,Vercammen E,Janssens S,et al.Stimulation of Toll-like receptor 3 and 4 induces interleukin-1β maturation by Caspase-8[J].J Exp Med,2008,205(9):1967-1973.
    [45]
    Moriwaki K,Bertin J,Gough PJ,et al.A RIPK3-Caspase 8 complex mediates atypical pro-IL-1 beta processing[J].J Immunol,2015,194(4):1938-1944.
    [46]
    Vince JE,Wong WWL,Gentle I,et al.Inhibitor of apoptosis proteins limit RIP3 kinase-dependent interleukin-1 activation.[J].Immunity,2012,36(2):215-227.
    [47]
    Shenderov K,Riteau N,Yip R,et al.Cutting edge:endoplasmic reticulum stress licenses macrophages to produce mature IL-1β in response to TLR4 stimulation through a Caspase-8 and TRIF-dependent pathway[J].J Immunol,2014,192(5):2029-2033.
    [48]
    Bossaller L,Chiang PI,Schmidt-Lauber C,et al.Cutting edge:FAS(CD95)mediates noncanonical IL-1β and IL-18 maturation via Caspase-8 in an RIP3-independent manner[J].J Immunol,2012,189(12):5508-5512.
    [49]
    Uchiyama R,Yonehara S,Tsutsui H.Fas-mediated inflammatory response in Listeria monocytogene infection[J].J Immunol,2013,190(8):4245-4254.
    [50]
    Gringhuis SI,Kaptein TM,Wevers BA,et al.Dectin-1 is an extracellular pathogen sensor for the induction and processing of IL-1β via a noncanonical Caspase-8 inflammasome[J].Nat Immunol,2012,13(3):246-254.
    [51]
    Philip NH,Dillon CP,Snyder AG,et al.Caspase-8 mediates Caspase-1 processing and innate immune defense in response to bacterial blockade of NF-κB and MAPK signaling[J].Proc Natl Acad Sci U S A,2014,111(20):7385-7390.
    [52]
    Pasparakis M,Vandenabeele P.Necroptosis and its role in inflammation[J].Nature,2015,517(7534):311-320.
    [53]
    Andrew K,Jin CK,Tae BK,et al.Caspase-8 deficiency in epidermal keratinocytes triggers an inflammatory skin disease[J].J Exp Med,2009,206(10):2161-2177.
    [54]
    Saleh M,Mathison JC,Wolinski MK,et al.Enhanced bacterial clearance and sepsis resistance in Caspase-12-deficient mice[J].Nature,2006,440(7087):1064-1068.
    [55]
    Walle LV,Fernandez DJ,Demon D,et al.Does Caspase-12 suppress inflammasome activation[J].Nature,2016,534(7605):E1-U15.
  • Related Articles

    [1]YE Zhenning, WU Zhenghong, ZHANG Huaqing. Research progress of blood-brain barrier crossing strategies and brain-targeted drug delivery mediated by nano-delivery system[J]. Journal of China Pharmaceutical University, 2024, 55(5): 590-602. DOI: 10.11665/j.issn.1000-5048.2024052202
    [2]LUO Xuelian, WU Chengsheng, ZHA Cheng, LIU Sheng. Research progress and prospects of implantable drug delivery systems for postoperative tumor therapy[J]. Journal of China Pharmaceutical University, 2024, 55(4): 538-547. DOI: 10.11665/j.issn.1000-5048.2024040901
    [3]WANG Shihao, LIU Lifeng, DING Yang, LI Suxin. Research progress of pH-responsive drug delivery systems in cancer immunotherapy[J]. Journal of China Pharmaceutical University, 2024, 55(4): 522-529. DOI: 10.11665/j.issn.1000-5048.2024011902
    [4]YU Jiayu, LIN Zezhi, CAO Wei, ZHANG Jianjun, WEI Yuanfeng, GAO Yuan, QIAN Shuai. Research progress of bio-metal organic frameworks in drug delivery system[J]. Journal of China Pharmaceutical University, 2023, 54(1): 23-33. DOI: 10.11665/j.issn.1000-5048.20221111003
    [5]ZHOU Yeshu, WANG Yanmei, ZHANG Beiyuan, WU Shuaicong, YANG Lei, YIN Lifang. Research progress of inorganic nanomaterials in drug delivery system[J]. Journal of China Pharmaceutical University, 2020, 51(4): 394-405. DOI: 10.11665/j.issn.1000-5048.20200403
    [6]LI Haoxian, LIN Huaqing, CHEN Jingwen, WANG Liyuan. Research progress of carbon nanomaterials in cancer drug delivery[J]. Journal of China Pharmaceutical University, 2019, 50(1): 100-106. DOI: 10.11665/j.issn.1000-5048.20190114
    [7]FAN Qianqian, XING Lei, QIAO Jianbin, ZHANG Chenglu, JIANG Hulin. Advances in drug delivery systems for the treatment of liver fibrosis[J]. Journal of China Pharmaceutical University, 2018, 49(3): 263-271. DOI: 10.11665/j.issn.1000-5048.20180302
    [8]CHEN Xing, KANG Yang, WU Jun. Advances in biodegradable functional polymers based protein drug delivery system[J]. Journal of China Pharmaceutical University, 2017, 48(2): 142-149. DOI: 10.11665/j.issn.1000-5048.20170203
    [9]WANG Yazhe, ZHOU Jianping, DING Yang, WANG Wei. Advances in research of biomimetic drug delivery systems[J]. Journal of China Pharmaceutical University, 2014, 45(3): 267-273. DOI: 10.11665/j.issn.1000-5048.20140303
    [10]TANG Yue, KE Xue. Advances of mesoporous silica nanoparticles as drug delivery system[J]. Journal of China Pharmaceutical University, 2012, 43(6): 567-572.
  • Cited by

    Periodical cited type(9)

    1. 蔡鸿飞,张琴,关伟键,杨阳,袁诚,许文东. 不同干燥方式对灵芝孢子粉中灵芝孢子油过氧化值的影响. 广东化工. 2024(01): 28-30 .
    2. 林志彬. 灵芝孢子油的药效物质基础研究进展. 菌物研究. 2024(01): 79-87 .
    3. Jianying Liu,Binzhi Zhang,Leqi Wang,Shasha Li,Qinqiang Long,Xue Xiao. Bioactive components, pharmacological properties and underlying mechanism of Ganoderma lucidum spore oil: A review. Chinese Herbal Medicines. 2024(03): 375-391 .
    4. 武美华,张胜男,敬隆鑫,律凤霞. 灵芝的活性成分及其药理作用的研究进展. 中国林副特产. 2023(02): 76-79 .
    5. 夏凤娜,关小莺,陈少丹,陈秋颜,张一帆,杨小兵. 灵芝孢子粉脂质成分HPLC-ELSD指纹图谱构建及含量测定. 食用菌学报. 2023(06): 52-59 .
    6. 井子良,吴纯宇,张慧敏,孙建博. 灵芝孢子油番茄红素复合物的抗肿瘤作用. 现代食品科技. 2022(09): 46-51 .
    7. 李志强,何玉霞. 灵芝多糖对人肺癌A549细胞增殖凋亡的作用. 现代食品科技. 2021(05): 38-42 .
    8. 张琴,李康强,杨阳,张圳,蔡鸿飞,许文东. 不同提取方式的灵芝孢子油品质研究. 广东化工. 2021(11): 48-49 .
    9. 包县峰,徐勇,刘维明,王星丽,孙培龙,张安强. 灵芝孢子粉生物活性成分及药理作用. 食品工业科技. 2020(06): 325-331 .

    Other cited types(6)

Catalog

    Article views (756) PDF downloads (1342) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return