Citation: | YU Yinghua, XU Zhimeng, ZENG Hao, NI Rongxing, LI Ping. Advances in the study of relationship between Caspases and innate immunity[J]. Journal of China Pharmaceutical University, 2019, 50(5): 622-630. DOI: 10.11665/j.issn.1000-5048.20190517 |
[1] |
Takanori K,Daniel AM.The role of inflammasomes in kidney disease[J].Nat Rev Nephrol,2019.doi: 10.1038/s41581-019-0158-z.
|
[2] |
Martinon F,Burns K,Tschopp J.The inflammasome:a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta[J].Molecular Cell,2002,10(2):417-426.
|
[3] |
Yi YS.Caspase-11 non-canonical inflammasome:a critical sensor of intracellular lipopolysaccharide in macrophage-mediated inflammatory responses[J].Immunology,2017,152(2):207-217.
|
[4] |
Man SM,Kanneganti TD.Converging roles of Caspases in inflammasome activation,cell death and innate immunity[J].Nat Rev Immunol,2016,16(1):7-21.
|
[5] |
Gurung P,Kanneganti TD.Novel Roles for Caspase-8 in IL-1β and Inflammasome Regulation[J].Am J Pathol,2015,85(1):17-25.
|
[6] |
Chen HH,Ning XH,Jiang ZF.Caspases control antiviral innate immunity[J].Cell Mol Immunol,2017,14(9):736-747.
|
[7] |
Winsor N,Krustev C,Bruce J,et al.Canonical and non-canonical inflammasomes in intestinal epithelial cells[J].Cell Microbiol,2019.doi: 10.1111/cmi.13079.
|
[8] |
He WT,Wan HQ,Hu LC,et al.Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion[J].Cell Res,2015,25(12):1285-1298.
|
[9] |
Mitchell PS,Sandstrom A,Vance RE,et al.The NLRP1 inflammasome:new mechanistic insights and unresolved mysteries[J].Curr Opin Immunol,2019,60:37-45.
|
[10] |
Minkiewicz J,Vaccari JPD,Keane RW.Human astrocytes express a novel NLRP2 inflammasome[J].Glia,2013,61(7):1113-1121.
|
[11] |
Mangan MSJ, Olhava EJ, Roush WR. Targeting the NLRP3 inflammasome in inflammatory diseases[J].Nat Rev Drug Disco,2018,17(8):588-606.
|
[12] |
Zhao Y, Shao F. The NAIP-NLRC4 inflammasome in innate immune detection of bacterial flagellin and type III secretion apparatus[J].Nat Rev,2015,265(1):85-102.
|
[13] |
Hu ZH, Zhou Q, Zhang CL, et al. Structural and biochemical basis for induced self-propagation of NLRC4[J].Science,2015,350(6259):399-404.
|
[14] |
Levy M,Thaiss CA,Zeevi D,et al.Microbiota-modulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling[J].Cell,2015,163(6):1428-1443.
|
[15] |
Hara H,Seregin SS,Yang DH,et al.The NLRP6 inflammasome recognizes lipoteichoic acid and regulates gram-positive pathogen infection[J].Cell,2018,175(6):1651-1664.
|
[16] |
Zhu S,Ding SY,Wang PH,et al.Nlrp9b inflammasome restricts rotavirus infection in intestinal epithelial cells[J].Nature,2017,546(7660):667-670.
|
[17] |
Park YH,Wood G,Kastner DL,et al.Pyrin inflammasome activation and RhoA signaling in the autoinflammatory diseases FMF and HIDS[J].Nat Immunol,2016,17(8):914-921.
|
[18] |
Xu H,Yang JL,Gao WQ,et al.Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome[J].Nature,2014,513(7517):237-241.
|
[19] |
Lugrin J,Martinon F.The AIM2 inflammasome:Sensor of pathogens and cellular perturbations[J].Immunol Rev,2018,281(1):99-114.
|
[20] |
Kerur N, Veettil MV, Sharma-Walia N, et al. IFI16 acts as a nuclear pathogen sensor to induce the inflammasome in response to Kaposi Sarcoma-associated herpesvirus infection[J].Cell Host Microbe,2011,9(5):363-375.
|
[21] |
Elinav E,Strowig T,Henao-Mejia J,et al.Regulation of the antimicrobial response by NLR proteins[J].Immunity,2011,34(5):665-679.
|
[22] |
Cordero MD,Williams MR,Ryffel B.AMP-activated protein kinase regulation of the NLRP3 inflammasome during aging[J].Trends Endocrin Met,2018,29(1):8-17.
|
[23] |
Gong T,Yang YQ,Jin TC,et al.Orchestration of NLRP3 inflammasome activation by ion fluxes[J].Trends Immunol,2018,39(5):393-406.
|
[24] |
He Y,Zeng MY,YangD,et al.NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux[J].Nature,2016,530(7590):354-357.
|
[25] |
Liu QY,Zhang DY,Hu DY,et al.The role of mitochondria in NLRP3 inflammasome activation[J].Mol Immunol,2018,469:115-124.
|
[26] |
Gaidt MM,Ebert TS,Chauhan D,et al.The DNA inflammasome in human myeloid cells is initiated by a STING-cell death program upstream of NLRP3[J].Cell,2017,171(5):1110-1124.
|
[27] |
He Y,Hara H,Núñez G.Mechanism and regulation of NLRP3 inflammasome activation[J].Trends Biochem Sci,2016,41(12):S0968000416301487.
|
[28] |
Levinsohn JL,Newman ZL,Hellmich KA,et al.Anthrax lethal factor cleavage of Nlrp1 is required for activation of the inflammasome[J].PLoS Pathog,2012,8(3):e002638.
|
[29] |
Sandstrom A,Mitchell PS,Goers L,et al.Functional degradation:A mechanism of NLRP1 inflammasome activation by diverse pathogen enzymes[J].Science,2019,364(6435):eaau1330.
|
[30] |
Chui AJ,Okondo MC,Rao SD,et al.N-terminal degradation activates the NLRP1B inflammasome[J].Science,2019,364(6435):82-85.
|
[31] |
Rathinam VAK,Zhao Y,Shao F.Innate immunity to intracellular LPS[J].Nat Immunol,2019,20:527-533.
|
[32] |
Liu X,Zhang ZB,Ruan JB,et al.Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores[J].Nature,2016,535(7610):153-158.
|
[33] |
Vanaja SK,Russo AJ,Behl B,et al.Bacterial outer membrane vesicles mediate cytosolic localization of LPS and Caspase-11 activation[J].Cell,2016,165(5):1106-1119.
|
[34] |
Kayagaki N,Stowe IB,Lee BL,et al.Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling[J].Nature,2015,526(7575):666-671.
|
[35] |
Ding JJ,Shao F.Snapshot:the noncanonical inflammasome[J].Cell,2017,168(3):544-544.
|
[36] |
Ruehl S,Broz P.Caspase-11 activates a canonical NLRP3 inflammasome by promoting K+ efflux[J].Eur J Immunol,2015,45(10):2927-2936.
|
[37] |
Zanoni I,Tan YH,Di Gioia M,et al.An endogenous Caspase-11 ligand elicits interleukin-1 release from living dendritic cells[J].Science,2016,352(6290):1232-1236.
|
[38] |
Chu LH,Indramohan M,Ratsimandresy RA,et al.The oxidized phospholipid oxPAPC protects from septic shock by targeting the non-canonical inflammasome in macrophages[J].Nat Commun,2018,9(1):996.
|
[39] |
DeLaney AA,Berry CT,Christian DA,et al.Caspase-8 promotes c-Rel-dependent inflammatory cytokine expression and resistance against Toxoplasma gondii[J].Proc Natl Acad Sci U S A,2019,116(24):11926-11935.
|
[40] |
Orning P,Weng D,Starheim K,et al.Pathogen blockade of TAK1 triggers Caspase-8-dependent cleavage of gasdermin D and cell death[J].Science,2018,362(6418):1064-1069.
|
[41] |
Sarhan J,Liu BC,Muendlein HI,et al.Caspase-8 induces cleavage of gasdermin D to elicit pyroptosis during Yersinia infection[J].Proc Natl Acad Sci U S A,2018,115(46):E10888-E10897.
|
[42] |
Kang TB,Yang SH,Toth B,et al.Caspase-8 blocks kinase RIPK3-mediated activation of the NLRP3 inflammasome[J].Immunity,2013,38(1):27-40.
|
[43] |
Tummers B,Green DR.Caspase-8:regulating life and death[J].Immunol Rev,2017,77(1):76-89.
|
[44] |
Maelfait J,Vercammen E,Janssens S,et al.Stimulation of Toll-like receptor 3 and 4 induces interleukin-1β maturation by Caspase-8[J].J Exp Med,2008,205(9):1967-1973.
|
[45] |
Moriwaki K,Bertin J,Gough PJ,et al.A RIPK3-Caspase 8 complex mediates atypical pro-IL-1 beta processing[J].J Immunol,2015,194(4):1938-1944.
|
[46] |
Vince JE,Wong WWL,Gentle I,et al.Inhibitor of apoptosis proteins limit RIP3 kinase-dependent interleukin-1 activation.[J].Immunity,2012,36(2):215-227.
|
[47] |
Shenderov K,Riteau N,Yip R,et al.Cutting edge:endoplasmic reticulum stress licenses macrophages to produce mature IL-1β in response to TLR4 stimulation through a Caspase-8 and TRIF-dependent pathway[J].J Immunol,2014,192(5):2029-2033.
|
[48] |
Bossaller L,Chiang PI,Schmidt-Lauber C,et al.Cutting edge:FAS(CD95)mediates noncanonical IL-1β and IL-18 maturation via Caspase-8 in an RIP3-independent manner[J].J Immunol,2012,189(12):5508-5512.
|
[49] |
Uchiyama R,Yonehara S,Tsutsui H.Fas-mediated inflammatory response in Listeria monocytogene infection[J].J Immunol,2013,190(8):4245-4254.
|
[50] |
Gringhuis SI,Kaptein TM,Wevers BA,et al.Dectin-1 is an extracellular pathogen sensor for the induction and processing of IL-1β via a noncanonical Caspase-8 inflammasome[J].Nat Immunol,2012,13(3):246-254.
|
[51] |
Philip NH,Dillon CP,Snyder AG,et al.Caspase-8 mediates Caspase-1 processing and innate immune defense in response to bacterial blockade of NF-κB and MAPK signaling[J].Proc Natl Acad Sci U S A,2014,111(20):7385-7390.
|
[52] |
Pasparakis M,Vandenabeele P.Necroptosis and its role in inflammation[J].Nature,2015,517(7534):311-320.
|
[53] |
Andrew K,Jin CK,Tae BK,et al.Caspase-8 deficiency in epidermal keratinocytes triggers an inflammatory skin disease[J].J Exp Med,2009,206(10):2161-2177.
|
[54] |
Saleh M,Mathison JC,Wolinski MK,et al.Enhanced bacterial clearance and sepsis resistance in Caspase-12-deficient mice[J].Nature,2006,440(7087):1064-1068.
|
[55] |
Walle LV,Fernandez DJ,Demon D,et al.Does Caspase-12 suppress inflammasome activation[J].Nature,2016,534(7605):E1-U15.
|
[1] | YE Zhenning, WU Zhenghong, ZHANG Huaqing. Research progress of blood-brain barrier crossing strategies and brain-targeted drug delivery mediated by nano-delivery system[J]. Journal of China Pharmaceutical University, 2024, 55(5): 590-602. DOI: 10.11665/j.issn.1000-5048.2024052202 |
[2] | LUO Xuelian, WU Chengsheng, ZHA Cheng, LIU Sheng. Research progress and prospects of implantable drug delivery systems for postoperative tumor therapy[J]. Journal of China Pharmaceutical University, 2024, 55(4): 538-547. DOI: 10.11665/j.issn.1000-5048.2024040901 |
[3] | WANG Shihao, LIU Lifeng, DING Yang, LI Suxin. Research progress of pH-responsive drug delivery systems in cancer immunotherapy[J]. Journal of China Pharmaceutical University, 2024, 55(4): 522-529. DOI: 10.11665/j.issn.1000-5048.2024011902 |
[4] | YU Jiayu, LIN Zezhi, CAO Wei, ZHANG Jianjun, WEI Yuanfeng, GAO Yuan, QIAN Shuai. Research progress of bio-metal organic frameworks in drug delivery system[J]. Journal of China Pharmaceutical University, 2023, 54(1): 23-33. DOI: 10.11665/j.issn.1000-5048.20221111003 |
[5] | ZHOU Yeshu, WANG Yanmei, ZHANG Beiyuan, WU Shuaicong, YANG Lei, YIN Lifang. Research progress of inorganic nanomaterials in drug delivery system[J]. Journal of China Pharmaceutical University, 2020, 51(4): 394-405. DOI: 10.11665/j.issn.1000-5048.20200403 |
[6] | LI Haoxian, LIN Huaqing, CHEN Jingwen, WANG Liyuan. Research progress of carbon nanomaterials in cancer drug delivery[J]. Journal of China Pharmaceutical University, 2019, 50(1): 100-106. DOI: 10.11665/j.issn.1000-5048.20190114 |
[7] | FAN Qianqian, XING Lei, QIAO Jianbin, ZHANG Chenglu, JIANG Hulin. Advances in drug delivery systems for the treatment of liver fibrosis[J]. Journal of China Pharmaceutical University, 2018, 49(3): 263-271. DOI: 10.11665/j.issn.1000-5048.20180302 |
[8] | CHEN Xing, KANG Yang, WU Jun. Advances in biodegradable functional polymers based protein drug delivery system[J]. Journal of China Pharmaceutical University, 2017, 48(2): 142-149. DOI: 10.11665/j.issn.1000-5048.20170203 |
[9] | WANG Yazhe, ZHOU Jianping, DING Yang, WANG Wei. Advances in research of biomimetic drug delivery systems[J]. Journal of China Pharmaceutical University, 2014, 45(3): 267-273. DOI: 10.11665/j.issn.1000-5048.20140303 |
[10] | TANG Yue, KE Xue. Advances of mesoporous silica nanoparticles as drug delivery system[J]. Journal of China Pharmaceutical University, 2012, 43(6): 567-572. |