Citation: | BAO Yaofei, XUE Qianru, WU Haiping, ZOU Bingjie, SONG Qinxin, ZHOU Guohua. Advances in point-of-care testing for new corona virus nucleic acid[J]. Journal of China Pharmaceutical University, 2020, 51(6): 635-645. DOI: 10.11665/j.issn.1000-5048.20200601 |
[1] |
.Nature,2020,579(7798):270?273.
|
[2] |
Luppa PB,Müller C,Schlichtiger A,et al.Point-of-care testing (POCT):current techniques and future perspectives[J]. Trends Analyt Chem,2011,30(6):887?898.
|
[3] |
To KK,Tsang OT,Yip CC,et al.Consistent detection of 2019 novel coronavirus in saliva[J].Clin Infect Dis,2020,71(15):841?843.
|
[4] |
Lamb LE,Bartolone SN,Ward E,et al.Rapid detection of novel coronavirus/severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by reverse transcription-loop-mediated isothermal amplification[J].PLoS One,2020,15(6):
|
[5] |
Vogels CBF,Brackney D,Wang J,et al.SalivaDirect:simple and sensitive molecular diagnostic test for SARS-CoV-2 surveillance[J].medRxiv,2020:2020.08.03.20167791.
|
[6] |
Rutgers.new Rutgers saliva test for Coronavirus gets FDA approval[EB/OL].(
|
[7] |
To KKW,Tsang OTY,Leung WS,et al.Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2:an observational cohort study[J]. Lancet Infect Dis,2020,20(5):565?574.
|
[8] |
Zhao Z,Cui H,Song W,et al.A simple magnetic nanoparticles-based viral RNA extraction method for efficient detection of SARS-CoV-2[J].bioRxiv,2020:2020.02.22.961268.
|
[9] |
Wee SK,Sivalingam SP,Yap EPH.Rapid direct nucleic acid amplification test without RNA extraction for SARS-CoV-2 using a portable PCR thermocycler[J].Genes (Basel),2020,11 (6):664.
|
[10] |
Wei S,Kohl E,Djandji A,et al. Direct diagnostic testing of SARS-CoV-2 without the need for prior RNA extraction[J]. medRxiv,2020;2020.05.28.20115220.
|
[11] |
Xia S,Chen X.Single-copy sensitive,field-deployable,and simultaneous dual-gene detection of SARS-CoV-2 RNA via modified RT-RPA[J].Cell Discov,2020,6:37.
|
[12] |
Arumugam A,Faron ML,Yu P,et al.A rapid SARS-CoV-2 RT-PCR assay for low resource settings[J].Diagnostics (Basel),2020,10(10):739.
|
[13] |
Yu L,Wu S,Hao X,et al.Rapid detection of COVID-19 coronavirus using a reverse transcriptional loop-mediated isothermal amplification (RT-LAMP) diagnostic platform[J]. Clin Chem,2020,66(7):975?977.
|
[14] |
Yang W,Dang X,Wang Q,et al.Rapid detection of SARS-CoV-2 using reverse transcription RT-LAMP method[J].medRxiv,2020:2020.03.02.20030130.
|
[15] |
Lu R,Wu X,Wan Z,et al.A novel reverse transcription loop-mediated isothermal amplification method for rapid detection of SARS-CoV-2[J].Int J Mol Sci,2020,21(8):2826.
|
[16] |
Ganguli A,Mostafa A,Berger J,et al.Rapid isothermal amplification and portable detection system for SARS-CoV-2[J]. Proc Natl Acad Sci U S A,2020,117(37):22727?22735.
|
[17] |
Sun F,Ganguli A,Nguyen J,et al.Smartphone-based multiplex 30-minute nucleic acid test of live virus from nasal swab extract[J]. Lab Chip,2020,20(9):1621?1627.
|
[18] |
Gonzalez-Gonzalez E,Lara-Mayorga IM,Rodriguez-Sanchez IP,et al.Scaling diagnostics in times of COVID-19:colorimetric loop-mediated isothermal amplification (LAMP) assisted by a 3D-printed incubator for cost-effective and scalable detection of SARS-CoV-2[J].medRxiv,2020:2020.04.09.20058651.
|
[19] |
Behrmann O,Bachmann I,Spiegel M,et al.Rapid detection of SARS-CoV-2 by low volume real-time single tube reverse transcription recombinase polymerase amplification using an exo probe with an internally linked quencher (Exo-IQ)[J].Clin Chem,2020,66(8):1047?1054.
|
[20] |
El-Tholoth M,Bau HH,Song J.A single and two-stage,closed-tube,molecular test for the 2019 novel coronavirus (COVID-19) at home,clinic,and points of entry[J].ChemRxiv,2020.
|
[21] |
Van Ness J,Van Ness LK,Galas DJ.Isothermal reactions for the amplification of oligonucleotides[J]. Proc Natl Acad Sci U S A,2003,100(8):4504?4509.
|
[22] |
Park GS,Ku K,Baek SH,et al.Development of reverse transcription loop-mediated isothermal amplification assays targeting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)[J].J Mol Diagn,2020,22(6):729?735.
|
[23] |
Yan C,Cui J,Huang L,et al.Rapid and visual detection of 2019 novel coronavirus (SARS-CoV-2) by a reverse transcription loop-mediated isothermal amplification assay[J].Clin Microbiol Infect,2020,26(6):773?779.
|
[24] |
Ganguli A,Mostafa A,Berger J,et al.Rapid isothermal amplification and portable detection system for SARS-CoV-2[J].Proc Natl Acad Sci U S A,2020,117(37):22727?22735.
|
[25] |
Yang T,Wang YC,Shen CF,et al.Point-of-care RNA-based diagnostic device for COVID-19[J].Diagnostics (Basel),2020,10(3):165.
|
[26] |
Moitra P,Alafeef M,Dighe K,et al.Selective naked-eye detection of SARS-CoV-2 mediated by N gene targeted antisense oligonucleotide capped plasmonic nanoparticles[J].ACS Nano,2020,14(6):7617?7627.
|
[27] |
Zhu X,Wang X,Han L,et al.Multiplex reverse transcription loop-mediated isothermal amplification combined with nanoparticle-based lateral flow biosensor for the diagnosis of COVID-19[J]. Biosens Bioelectron,2020,166:112437.
|
[28] |
Gootenberg JS,Abudayyeh OO,Lee JW,et al.Nucleic acid detection with CRISPR-Cas13a/C2c2[J].Science,2017,356(6336):438?442.
|
[29] |
Zhang F,Abudayyeh OO,Gootenberg JS.Protocol for detection of COVID-19 using CRISPR diagnostics[EB/OL].(
|
[30] |
Hou T,Zeng W,Yang M,et al.Development and evaluation of a rapid CRISPR-based diagnostic for COVID-19[J].PLoS Pathog,2020,16(8):
|
[31] |
Joung J,Ladha A,Saito M,et al. Point-of-care testing for COVID-19 using SHERLOCK diagnostics[J]. Preprint. medRxiv. 2020;2020.05.04.20091231.
|
[32] |
Chen JS,Ma E,Harrington LB,et al.CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity[J].Science,2018,360(6387 ):436?439.
|
[33] |
Huang Z,Tian D,Liu Y,et al.Ultra-sensitive and high-throughput CRISPR-powered COVID-19 diagnosis[J].Biosens Bioelectron,2020,164:112316.
|
[34] |
Lucia C,Federico PB,Alejandra GC.An ultrasensitive,rapid,and portable coronavirus SARS-CoV-2 sequence detection method based on CRISPR-Cas12[J].bioRxiv,2020:2020.02.29.971127.
|
[35] |
Broughton JP,Deng X,Yu G,et al.CRISPR-Cas12-based detection of SARS-CoV-2[J].Nat Biotechnol,2020,38(7):870?874.
|
[36] |
Ding X,Yin K,Li Z,et al.Ultrasensitive and visual detection of SARS-CoV-2 using all-in-one dual CRISPR-Cas12a assay[J].Nat Commun,2020,11(1):4711.
|
[37] |
Guo L,Sun X,Wang X,et al.SARS-CoV-2 detection with CRISPR diagnostics[J].Cell Discov,2020,6:34.
|
[38] |
FDA.Coronavirus Disease 2019 (COVID-19) EUA Information [EB/OL].(
|
[39] |
Moran A,Beavis KG,Matushek SM,et al.Detection of SARS-CoV-2 by use of the Cepheid Xpert Xpress SARS-CoV-2 and Roche cobas SARS-CoV-2 assays[J]. J Clin Microbiol,2020,58 (8):e00772?20.
|
[40] |
Hogan CA,Garamani N,Lee AS,et al.Comparison of the Accula SARS-CoV-2 test with a laboratory-developed assay for detection of SARS-CoV-2 RNA in clinical nasopharyngeal specimens[J].J Clin Microbiol,2020,58 (8):e01072?20.
|
[41] |
NMPA:NMPA conducts emergency approvalof testing products for 2019-nCoV[EB/OL].(
|
[42] |
Mcdonald S,Courtney DM,Clark AE,et al.Diagnostic performance of a rapid point-of-care test for SARS-CoV-2 in an urban emergency department setting[J].Acad Emerg Med,2020,10.1111/acem.14039.
|
[43] |
Mitchell SL,George KS.Evaluation of the COVID19 ID NOW EUA assay[J].J Clin Virol,2020,128:104429.
|
[1] | MU Yao, ZHAO Huimin, LIU Haochen, LIU Xiaoquan. Advances in drug development for Alzheimer’s disease[J]. Journal of China Pharmaceutical University, 2024, 55(6): 816-825. DOI: 10.11665/j.issn.1000-5048.2024010202 |
[2] | XING Xuyang, WANG Xiaochun, HE Wei. Advances in research on tumor immunotherapy and its drug development[J]. Journal of China Pharmaceutical University, 2021, 52(1): 10-19. DOI: 10.11665/j.issn.1000-5048.20210102 |
[3] | MEI Jiahao, HONG Ze, WANG Chen. Advances of drugs in targeting cGAS-STING signaling pathway[J]. Journal of China Pharmaceutical University, 2020, 51(3): 249-259. DOI: 10.11665/j.issn.1000-5048.20200301 |
[4] | CHEN Xing, KANG Yang, WU Jun. Advances in biodegradable functional polymers based protein drug delivery system[J]. Journal of China Pharmaceutical University, 2017, 48(2): 142-149. DOI: 10.11665/j.issn.1000-5048.20170203 |
[5] | SU Zhigui, MO Ran, ZHANG Can. Advances of nano-drug delivery systems overcoming the physiological and pathological barriers of tumor[J]. Journal of China Pharmaceutical University, 2015, 46(1): 28-39. DOI: 10.11665/j.issn.1000-5048.20150103 |
[6] | YIN Lei, WANG Ying, CHEN Song, GAO Xiangdong. Advances of glucagon-like peptide-1 receptor agonists in the treatment of nervous system diseases[J]. Journal of China Pharmaceutical University, 2014, 45(4): 383-391. DOI: 10.11665/j.issn.1000-5048.20140401 |
[7] | WANG Yazhe, ZHOU Jianping, DING Yang, WANG Wei. Advances in research of biomimetic drug delivery systems[J]. Journal of China Pharmaceutical University, 2014, 45(3): 267-273. DOI: 10.11665/j.issn.1000-5048.20140303 |
[8] | WANG Juan, LIAO Hong. Advances in drug research and development through directed differentiation of stem cells[J]. Journal of China Pharmaceutical University, 2011, 42(3): 193-197. |
[9] | XU Si-sheng, ZHANG Hui-bin, ZHOU Jin-pei, HUANG Jian-jun. Advances of new antidiabetic drugs[J]. Journal of China Pharmaceutical University, 2011, 42(2): 97-106. |
[10] | Advances and Prospects of Drug Discovery and Development Zhang Yihua, Peng Sixun, Hua Weiyi[J]. Journal of China Pharmaceutical University, 1999, (2): 75-80. |
1. |
金伟斌,陈礼峰,唐倩倩,顾晓风. 顶空气相色谱法测定生脉注射液中甲醛和乙醛的含量. 中国合理用药探索. 2022(06): 115-120 .
![]() | |
2. |
李浩宇,唐宝强,何东升,涂家生. 气相色谱法测定药用辅料聚西托醇1000中的残留杂质. 中国药科大学学报. 2022(03): 293-299 .
![]() | |
3. |
王贺,钱利武,阚红卫. 药用辅料监管法规、质量标准现状分析及应对措施. 中南药学. 2022(08): 1937-1941 .
![]() | |
4. |
庞丽然,贺丞,杜力,刘国芳. 重组蛋白中吐温80含量硫氰酸铵钴显色检测法的改进及验证. 中国生物制品学杂志. 2021(09): 1111-1113+1119 .
![]() | |
5. |
郑永强,付俊伟,朱慧敏,陶晓军. 一种用于实现脑靶向的负载长春新碱抗肿瘤纳米药物制剂的制备及表征. 肿瘤药学. 2021(05): 547-553 .
![]() | |
6. |
黄婧,吴宏伟. 依诺沙星滴眼液辅料及药包材相容性研究. 中国现代应用药学. 2021(22): 2802-2806 .
![]() |