• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
ZHOU Xinyuan, LIU Nan, ZHANG Pan, HUO Meirong. Advances in research on therapeutic strategies of targeting pancreatic cancer stroma[J]. Journal of China Pharmaceutical University, 2021, 52(6): 653-662. DOI: 10.11665/j.issn.1000-5048.20210602
Citation: ZHOU Xinyuan, LIU Nan, ZHANG Pan, HUO Meirong. Advances in research on therapeutic strategies of targeting pancreatic cancer stroma[J]. Journal of China Pharmaceutical University, 2021, 52(6): 653-662. DOI: 10.11665/j.issn.1000-5048.20210602

Advances in research on therapeutic strategies of targeting pancreatic cancer stroma

Funds: This study was supported by the National Natural Science Foundation of China (No.82073175, No.81872424)
More Information
  • Received Date: May 17, 2021
  • Revised Date: June 01, 2021
  • Pancreatic cancer stroma plays a critical role in tumor progression, invasion, metastasis and resistance.Targeting tumor cell alone could not meet the demand for prolonging patients'' survival.Growing studies have laid emphasis on developing combined regimens between targeting pancreatic cancer stroma and chemotherapy, radiotherapy and immunotherapy.We are faced with some new opportunities in spite of the great challenges brought to the research and development of targeting drugs owing to the complicated stroma components, crosstalking signal pathways and abnormal angiogenesis of pancreatic cancer.In this article, recent advances in therapeutic strategies of targeting pancreatic cancer stroma are reviewed and analyzed from the aspects of extracellular matrix (ECM), cancer associated fibroblasts (CAFs) and vessels, in the hope of providing some novel ideas for targeting therapy against pancreatic cancer.
  • [1]
    . World J Gastroenterol,2018,24(19):2047-2060.
    [2]
    Mizrahi JD,Surana R,Valle JW,et al. Pancreatic cancer[J]. The Lancet,2020,395(10242):2008-2020.
    [3]
    Whatcott CJ,Diep CH,Jiang P,et al. Desmoplasia in primary tumors and metastatic lesions of pancreatic cancer[J]. Clin Cancer Res,2015,21(15):3561-3568.
    [4]
    Provenzano PP,Cuevas C,Chang AE,et al. Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma[J]. Cancer Cell,2012,21(3):418-429.
    [5]
    Kalluri R. The biology and function of fibroblasts in cancer[J]. Nat Rev Cancer,2016,16(9):582-598.
    [6]
    Bailey JM,Swanson BJ,Hamada T,et al. Sonic hedgehog promotes desmoplasia in pancreatic cancer[J]. Clin Cancer Res,2008,14(19):5995-6004.
    [7]
    Ohlund D,Handly SA,Biffi G,et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer[J]. J Exp Med,2017,214(3):579-596.
    [8]
    Sun Q,Zhang B,Hu Q,et al. The impact of cancer-associated fibroblasts on major hallmarks of pancreatic cancer[J]. Theranostics,2018,8(18):5072-5087.
    [9]
    Shek F WT,Benyon RC,Walker FM,et al. Expression of transforming growth factor-β1 by pancreatic stellate cells and its implications for matrix secretion and turnover in chronic pancreatitis[J]. Am J Pathol,2002,160(5):1787-1798.
    [10]
    Ansari D,Carvajo M,Bauden M,et al. Pancreatic cancer stroma: controversies and current insights[J]. Scand J Gastroenterol,2017,52(6/7):641-646.
    [11]
    Hosein AN,Brekken RA,Maitra A. Pancreatic cancer stroma: an update on therapeutic targeting strategies[J]. Nat Rev Gastroenterol Hepatol,2020,17(8):487-505.
    [12]
    Brunetto E,De Monte L,Balzano G,et al. The IL-1/IL-1 receptor axis and tumor cell released inflammasome adaptor ASC are key regulators of TSLP secretion by cancer associated fibroblasts in pancreatic cancer[J]. J Immunother Cancer,2019,7(1):45. doi:10.1186/s40425-019-0521-4.
    [13]
    Wang T,Notta F,Navab R,et al. Senescent carcinoma-associated fibroblasts upregulate il8 to enhance prometastatic phenotypes[J]. Mol Cancer Res,2017,15(1):3-14.
    [14]
    Kadera BE,Li L,Toste PA,et al. MicroRNA-21 in pancreatic ductal adenocarcinoma tumor-associated fibroblasts promotes metastasis[J]. PLoS One,2013,8(8):e71978. doi:10.1371/journal.pone.0071978.
    [15]
    Tulla M,Pentikainen OT,Viitasalo T,et al. Selective binding of collagen subtypes by integrin alpha 1I,alpha 2I,and alpha 10I domains[J]. J Biol Chem,2001,276(51):48206-48212.
    [16]
    Armstrong T,Packham G,Murphy LB,et al. Type I collagen promotes the malignant phenotype of pancreatic ductal adenocarcinoma[J]. Clin Cancer Res,2004,10(21):7427-7437.
    [17]
    Olivares O,Mayers JR,Gouirand V,et al. Collagen-derived proline promotes pancreatic ductal adenocarcinoma cell survival under nutrient limited conditions[J]. Nat Commun,2017,8:16031. doi: 10.1038/ncomms16031.
    [18]
    Chen D,Smith LR,Khandekar G,et al. Distinct effects of different matrix proteoglycans on collagen fibrillogenesis and cell-mediated collagen reorganization[J]. Sci Rep,2020,10(1):19065. doi: 10.1038/s41598-020-76107-0.
    [19]
    Wong KM,Horton KJ,Coveler AL,et al. Targeting the tumor stroma: the biology and clinical development of pegylated recombinant human hyaluronidase (PEGPH20)[J]. Curr Oncol Rep,2017,19(7):47. doi: 10.1007/s11912-017-0608-3.
    [20]
    Wegner CS,Hauge A,Gaustad JV,et al. Dynamic contrast-enhanced MRI of the microenvironment of pancreatic adenocarcinoma xenografts[J]. Acta Oncol,2017,56(12):1754-1762.
    [21]
    Abyaneh HS,Regenold M,McKee TD,et al. Towards extracellular matrix normalization for improved treatment of solid tumors[J]. Theranostics,2020,10(4):1960-1980.
    [22]
    Gallo N,Nasser H,Salvatore L,et al. Hyaluronic acid for advanced therapies:Promises and challenges[J]. Eur Polym J,2019,117:134-147.
    [23]
    Hingorani SR,Zheng L,Bullock AJ,et al. HALO 202:randomized phase II study of PEGPH20 plus nab-paclitaxel/gemcitabine versus nab-paclitaxel/gemcitabine in patients with untreated,metastatic pancreatic ductal adenocarcinoma[J]. J Clin Oncol,2018,36(4):359-366.
    [24]
    Zinger A,Koren L,Adir O,et al. Collagenase nanoparticles enhance the penetration of drugs into pancreatic tumors[J]. ACS Nano,2019,13(10):11008-11021.
    [25]
    Ho WJ,Jaffee EM,Zheng L. The tumour microenvironment in pancreatic cancer - clinical challenges and opportunities[J]. Nat Rev Clin Oncol,2020,17(9):527-540.
    [26]
    Steele NG,Biffi G,Kemp SB,et al. Inhibition of hedgehog signaling alters fibroblast composition in pancreatic cancer[J]. Clin Cancer Res,2021,27(7):2023-2037.
    [27]
    Chronopoulos A,Robinson B,Sarper M,et al. ATRA mechanically reprograms pancreatic stellate cells to suppress matrix remodelling and inhibit cancer cell invasion[J]. Nat Commun,2016,7:12630. doi: 10.1038/ncomms12630.
    [28]
    Kocher HM,Basu B,Froeling FEM,et al. Phase I clinical trial repurposing all-trans retinoic acid as a stromal targeting agent for pancreatic cancer[J]. Nat Commun,2020,11(1):4841.
    [29]
    Shi X,Young CD,Zhou H,et al. Transforming growth factor-beta signaling in fibrotic diseases and cancer-associated fibroblasts[J]. Biomolecules,2020,10(12):1666. doi:10.3390/biom10121666.
    [30]
    Ciardiello D,Elez E,Tabernero J,et al. Clinical development of therapies targeting TGFbeta:current knowledge and future perspectives[J]. Ann Oncol,2020,31(10):1336-1349.
    [31]
    Melisi D,Garcia CR,Macarulla T,et al. Galunisertib plus gemcitabine vs. gemcitabine for first-line treatment of patients with unresectable pancreatic cancer[J]. Br J Cancer,2018,119(10):1208-1214.
    [32]
    Ji T,Lang J,Wang J,et al. Designing liposomes to suppress extracellular matrix expression to enhance drug penetration and pancreatic tumor therapy[J]. ACS Nano,2017,11(9):8668-8678.
    [33]
    Feng J,Xu M,Wang J,et al. Sequential delivery of nanoformulated alpha-mangostin and triptolide overcomes permeation obstacles and improves therapeutic effects in pancreatic cancer[J]. Biomaterials,2020,241:119907. doi: 10.1016/j.biomaterials.2020.119907.
    [34]
    Guo W,Chen W,Yu W,et al. Small interfering RNA-based molecular therapy of cancers[J]. Chin J Cancer,2013,32(9):488-493.
    [35]
    Han X,Li Y,Xu Y,et al. Reversal of pancreatic desmoplasia by re-educating stellate cells with a tumour microenvironment-activated nanosystem[J]. Nat Commun,2018,9(1):3390. doi: 10.1038/s41467-018-05906-x.
    [36]
    Lindquist JN,Parsons CJ,Stefanovic B,et al. Regulation of alpha1(I) collagen messenger RNA decay by interactions with alphaCP at the 3''-untranslated region[J]. J Biol Chem,2004,279(22):23822-23829.
    [37]
    Li Y,Zhao Z,Lin CY,et al. Silencing PCBP2 normalizes desmoplastic stroma and improves the antitumor activity of chemotherapy in pancreatic cancer[J]. Theranostics,2021,11(5):2182-2200.
    [38]
    Kuninty PR,Bojmar L,Tjomsland V,et al. MicroRNA-199a and -214 as potential therapeutic targets in pancreatic stellate cells in pancreatic tumor[J]. Oncotarget,2016,7(13):16396-16408.
    [39]
    Ho AS,Huang X,Cao H,et al. Circulating miR-210 as a novel hypoxia marker in pancreatic cancer[J]. Transl Oncol,2010,3(2):109-113.
    [40]
    Xie Y,Hang Y,Wang Y,et al. Stromal modulation and treatment of metastatic pancreatic cancer with local intraperitoneal triple miRNA/siRNA nanotherapy[J]. ACS Nano,2020,14(1):255-271.
    [41]
    Zeltz C,Primac I,Erusappan P,et al. Cancer-associated fibroblasts in desmoplastic tumors: emerging role of integrins[J]. Semin Cancer Biol,2020,62:166-181.
    [42]
    Zeltz C,Alam J,Liu HS,et al. α11β1 integrin is induced in a subset of cancer-associated fibroblasts in desmoplastic tumor stroma and mediates in vitro cell migration[J]. Cancers,2019,11(6):765. doi: 10.3390/cancers11060765.
    [43]
    Kota J,Hancock J,Kwon J,et al. Pancreatic cancer: stroma and its current and emerging targeted therapies[J]. Cancer Lett,2017,391:38-49.
    [44]
    Gunderson AJ,Yamazaki T,McCarty K,et al. Blockade of fibroblast activation protein in combination with radiation treatment in murine models of pancreatic adenocarcinoma[J]. PLoS One,2019,14(2):e0211117. doi: 10.1371/journal.pone.0211117.
    [45]
    Lo A,Li CP,Buza EL,et al. Fibroblast activation protein augments progression and metastasis of pancreatic ductal adenocarcinoma[J]. JCI Insight,2017,2(19):e92232. doi: 10.1172/jci.insight.92232.
    [46]
    Kraman M,Bambrough PJ,Arnold JN,et al. Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein-alpha[J]. Science,2010,330(6005):827-830.
    [47]
    Jiang GM,Xu W,Du J,et al. The application of the fibroblast activation protein α-targeted immunotherapy strategy[J]. Oncotarget,2016,7(22):33472-33482.
    [48]
    Jackson HJ,Rafiq S,Brentjens RJ.Driving CAR T-cells forward[J]. Nat Rev Clin Oncol,2016,13(6):370-383.
    [49]
    Benmebarek MR,Karches CH,Cadilha BL,et al. Killing mechanisms of chimeric antigen receptor (CAR) T cells[J]. Int J Mol Sci,2019,20(6):1283. doi: 10.3390/ijms20061283.
    [50]
    Wang LC,Lo A,Scholler J,et al. Targeting fibroblast activation protein in tumor stroma with chimeric antigen receptor T cells can inhibit tumor growth and augment host immunity without severe toxicity[J]. Cancer Immunol Res,2014,2(2):154-166.
    [51]
    Lo A,Wang LS,Scholler J,et al. Tumor-promoting desmoplasia is disrupted by depleting FAP-expressing stromal cells[J]. Cancer Res,2015,75(14):2800-2810.
    [52]
    Chi J,Patel R,Rehman H,et al. Recent advances in immunotherapy for pancreatic cancer[J]. J Cancer Metastasis Treat,2020,6:43. doi: 10.20517/2394-4722.2020.90.
    [53]
    Folkman J. Tumor angiogenesis: therapeutic implications[J]. N Engl J Med,1971,285(21):1182-1186.
    [54]
    Martin JD,Seano G,Jain RK. Normalizing function of tumor vessels: progress, opportunities, and challenges[J]. Annu Rev Physiol,2019,81:505-534.
    [55]
    Farnsworth RH,Lackmann M,Achen MG,et al. Vascular remodeling in cancer[J]. Oncogene,2014,33(27):3496-3505.
    [56]
    Longo V,Brunetti O,Gnoni A,et al. Angiogenesis in pancreatic ductal adenocarcinoma: a controversial issue[J]. Oncotarget,2016,7(36):58649-58658.
    [57]
    Gaustad JV,Simonsen TG,Wegner CS,et al. Vascularization,oxygenation,and the effect of sunitinib treatment in pancreatic ductal adenocarcinoma xenografts[J]. Front Oncol,2019,9:845. doi: 10.3389/fonc.2019.00845.
    [58]
    Li S,Xu HX,Wu CT,et al. Angiogenesis in pancreatic cancer: current research status and clinical implications[J]. Angiogenesis,2019,22(1):15-36.
    [59]
    Katsuta E,Qi Q,Peng X,et al. Pancreatic adenocarcinomas with mature blood vessels have better overall survival[J]. Sci Rep,2019,9(1):1310. doi: 10.1038/s41598-018-37909-5.
    [60]
    Ozdemir BC,Pentcheva HT,Carstens JL,et al. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival[J]. Cancer Cell,2014,25(6):719-734.
  • Related Articles

    [1]MU Yao, ZHAO Huimin, LIU Haochen, LIU Xiaoquan. Advances in drug development for Alzheimer’s disease[J]. Journal of China Pharmaceutical University, 2024, 55(6): 816-825. DOI: 10.11665/j.issn.1000-5048.2024010202
    [2]XING Xuyang, WANG Xiaochun, HE Wei. Advances in research on tumor immunotherapy and its drug development[J]. Journal of China Pharmaceutical University, 2021, 52(1): 10-19. DOI: 10.11665/j.issn.1000-5048.20210102
    [3]MEI Jiahao, HONG Ze, WANG Chen. Advances of drugs in targeting cGAS-STING signaling pathway[J]. Journal of China Pharmaceutical University, 2020, 51(3): 249-259. DOI: 10.11665/j.issn.1000-5048.20200301
    [4]CHEN Xing, KANG Yang, WU Jun. Advances in biodegradable functional polymers based protein drug delivery system[J]. Journal of China Pharmaceutical University, 2017, 48(2): 142-149. DOI: 10.11665/j.issn.1000-5048.20170203
    [5]SU Zhigui, MO Ran, ZHANG Can. Advances of nano-drug delivery systems overcoming the physiological and pathological barriers of tumor[J]. Journal of China Pharmaceutical University, 2015, 46(1): 28-39. DOI: 10.11665/j.issn.1000-5048.20150103
    [6]YIN Lei, WANG Ying, CHEN Song, GAO Xiangdong. Advances of glucagon-like peptide-1 receptor agonists in the treatment of nervous system diseases[J]. Journal of China Pharmaceutical University, 2014, 45(4): 383-391. DOI: 10.11665/j.issn.1000-5048.20140401
    [7]WANG Yazhe, ZHOU Jianping, DING Yang, WANG Wei. Advances in research of biomimetic drug delivery systems[J]. Journal of China Pharmaceutical University, 2014, 45(3): 267-273. DOI: 10.11665/j.issn.1000-5048.20140303
    [8]WANG Juan, LIAO Hong. Advances in drug research and development through directed differentiation of stem cells[J]. Journal of China Pharmaceutical University, 2011, 42(3): 193-197.
    [9]XU Si-sheng, ZHANG Hui-bin, ZHOU Jin-pei, HUANG Jian-jun. Advances of new antidiabetic drugs[J]. Journal of China Pharmaceutical University, 2011, 42(2): 97-106.
    [10]Advances and Prospects of Drug Discovery and Development Zhang Yihua, Peng Sixun, Hua Weiyi[J]. Journal of China Pharmaceutical University, 1999, (2): 75-80.
  • Cited by

    Periodical cited type(6)

    1. 金伟斌,陈礼峰,唐倩倩,顾晓风. 顶空气相色谱法测定生脉注射液中甲醛和乙醛的含量. 中国合理用药探索. 2022(06): 115-120 .
    2. 李浩宇,唐宝强,何东升,涂家生. 气相色谱法测定药用辅料聚西托醇1000中的残留杂质. 中国药科大学学报. 2022(03): 293-299 . 本站查看
    3. 王贺,钱利武,阚红卫. 药用辅料监管法规、质量标准现状分析及应对措施. 中南药学. 2022(08): 1937-1941 .
    4. 庞丽然,贺丞,杜力,刘国芳. 重组蛋白中吐温80含量硫氰酸铵钴显色检测法的改进及验证. 中国生物制品学杂志. 2021(09): 1111-1113+1119 .
    5. 郑永强,付俊伟,朱慧敏,陶晓军. 一种用于实现脑靶向的负载长春新碱抗肿瘤纳米药物制剂的制备及表征. 肿瘤药学. 2021(05): 547-553 .
    6. 黄婧,吴宏伟. 依诺沙星滴眼液辅料及药包材相容性研究. 中国现代应用药学. 2021(22): 2802-2806 .

    Other cited types(2)

Catalog

    Article views (340) PDF downloads (505) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return