• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
ZHANG Zhan, FENG Yan, LI Qian, CUI Li. Characterization of a UDP-glucose 4-epimerase from Acinetobacter Baumannii[J]. Journal of China Pharmaceutical University, 2021, 52(6): 742-750. DOI: 10.11665/j.issn.1000-5048.20210613
Citation: ZHANG Zhan, FENG Yan, LI Qian, CUI Li. Characterization of a UDP-glucose 4-epimerase from Acinetobacter Baumannii[J]. Journal of China Pharmaceutical University, 2021, 52(6): 742-750. DOI: 10.11665/j.issn.1000-5048.20210613

Characterization of a UDP-glucose 4-epimerase from Acinetobacter Baumannii

Funds: This study was supported by the National Natural Science Foundation of China (No.21977067, No.31770098, No.31620103901) and the National Key R&D Program of China (No.2018YFA0900702)
More Information
  • Received Date: April 21, 2021
  • Revised Date: November 03, 2021
  • The purpose of this article is to express the UDP-glucose 4-epimerase from Acinetobacter baumannii AB0057, characterize its enzymatic properties and analyze its structure and function.The epimerase gene was constructed into pET-28a expression vector and heterologously expressed in BL21(DE3).Enzyme activity was assayed using high performance liquid chromatography.The structure and key residues were analyzed by phylogenetic analysis, sequence alignment, homology modeling and molecular docking.Results indicated that the recombinant enzyme Gne1 was expressed at a molecular weight of 38.9 kD, with an optimum temperature of 44 °C and an optimum pH of 6.0 .Michaelis-Menten parameters KM and kcat were (1.227 ± 0.082 4) mmol/L and (82.64 ± 3.562) × 10-3?min-1, respectively.This enzyme belongs to NADB_Rossmann superfamily and UDP_G4E_1_SDR_e subgroup with typical GXGXXG and YXXXK sequence motifs.The N-terminal structural domain bound to NAD, while the C-terminal structural domain bound to substrate, and the catalytic key sites were S125 and Y150.The current work verified the epimerase activity of Gne1, explained its sequence and structural features, revealed its binding mode with substrates and cofactors, and analyzed the key residues, which provides a basis for protein engineering to improve the epimerase activity and then use biological enzymatic method to synthesize rare functional sugars.
  • [1]
    . J Biosci Bioeng,2004,97(2):89-94.
    [2]
    Mu WM,Zhang WL,Feng YH,et al. Recent advances on applications and biotechnological production of D-psicose[J]. Appl Microbiol Biotechnol,2012,94(6):1461-1467.
    [3]
    Kim P. Current studies on biological tagatose production using L-arabinose isomerase:a review and future perspective[J]. Appl Microbiol Biotechnol,2004,65(3):243-249.
    [4]
    Oh DK. Tagatose:properties,applications,and biotechnological processes[J]. Appl Microbiol Biotechnol,2007,76(1):1-8.
    [5]
    Jenkinson SF,Fleet GW,Nash RJ,et al. Looking-glass synergistic pharmacological chaperones:DGJ and L-DGJ from the enantiomers of tagatose[J]. Org Lett,2011,13(15):4064-4067.
    [6]
    Izumori K. Izumoring:a strategy for bioproduction of all hexoses[J]. J Biotechnol,2006,124(4):717-722.
    [7]
    Zhu HM,Sun B,Li YJ,et al. KfoA,the UDP-glucose-4-epimerase of Escherichia coli strain O5:K4:H4,shows preference for acetylated substrates[J]. Appl Microbiol Biotechnol,2018,102(2):751-761.
    [8]
    Ishiyama N,Creuzenet C,Lam JS,et al. Crystal structure of WbpP,a genuine UDP-N-acetylglucosamine 4-epimerase from Pseudomonas aeruginosa:substrate specificity in udp-hexose 4-epimerases[J]. J Biol Chem,2004,279(21):22635-22642.
    [9]
    Frey PA. The Leloir pathway:a mechanistic imperative for three enzymes to change the stereochemical configuration of a single carbon in galactose[J]. FASEB J,1996,10(4):461-470.
    [10]
    Holden HM,Rayment I,Thoden JB. Structure and function of enzymes of the Leloir pathway for galactose metabolism[J]. J Biol Chem,2003,278(45):43885-43888.
    [11]
    Ostash B,Doud EH,Lin C,et al. Complete characterization of the seventeen step moenomycin biosynthetic pathway[J]. Biochemistry,2009,48(37):8830-8841.
    [12]
    Song HB,He M,Cai ZP,et al. UDP-glucose 4-epimerase and β-1,4-galactosyltransferase from the oyster Magallana gigas as valuable biocatalysts for the production of galactosylated products[J]. Int J Mol Sci,2018,19(6):1600-1610.
    [13]
    Kim HJ,Kang SY,Park JJ,et al. Novel activity of UDP-galactose-4-epimerase for free monosaccharide and activity improvement by active site-saturation mutagenesis[J]. Appl Biochem Biotechnol,2011,163(3):444-451.
    [14]
    Wilson DB,Hogness DS. The enzymes of the galactose operon in Escherichia coli. I. purification and characterization of uridine diphosphogalactose 4-epimerase[J]. J Biol Chem,1964,239:2469-2481.
    [15]
    Swanson BA,Frey PA. Identification of lysine 153 as a functionally important residue in UDP-galactose 4-epimerase from Escherichia coli[J]. Biochemistry,1993,32(48):13231-13236.
    [16]
    Liu Y,Thoden JB,Kim J,et al. Mechanistic roles of tyrosine 149 and serine 124 in UDP-galactose 4-epimerase from Escherichia coli[J]. Biochemistry,1997,36(35):10675-10684.
    [17]
    Liu Y,Vanhooke JL,Frey PA. UDP-galactose 4-epimerase:NAD+ content and a charge-transfer band associated with the substrate-induced conformational transition[J]. Biochemistry,1996,35(23):7615-7620.
    [18]
    Frey PA,Hegeman AD. Chemical and stereochemical actions of UDP-galactose 4-epimerase[J]. Acc Chem Res,2013,46(7):1417-1426.
    [19]
    Thoden JB,Hegeman AD,Wesenberg G,et al. Structural analysis of UDP-sugar binding to UDP-galactose 4-epimerase from Escherichia coli[J]. Biochemistry,1997,36(21):6294-6304.
    [20]
    Thoden JB,Holden HM. Dramatic differences in the binding of UDP-galactose and UDP-glucose to UDP-galactose 4-epimerase from Escherichia coli[J]. Biochemistry,1998,37(33):11469-11477.
    [21]
    Thoden JB,Frey PA,Holden HM. Molecular structure of the NADH/UDP-glucose abortive complex of UDP-galactose 4-epimerase from Escherichia coli:implications for the catalytic mechanism[J]. Biochemistry,1996,35(16):5137-5144.
  • Related Articles

    [1]MU Yao, ZHAO Huimin, LIU Haochen, LIU Xiaoquan. Advances in drug development for Alzheimer’s disease[J]. Journal of China Pharmaceutical University, 2024, 55(6): 816-825. DOI: 10.11665/j.issn.1000-5048.2024010202
    [2]XING Xuyang, WANG Xiaochun, HE Wei. Advances in research on tumor immunotherapy and its drug development[J]. Journal of China Pharmaceutical University, 2021, 52(1): 10-19. DOI: 10.11665/j.issn.1000-5048.20210102
    [3]MEI Jiahao, HONG Ze, WANG Chen. Advances of drugs in targeting cGAS-STING signaling pathway[J]. Journal of China Pharmaceutical University, 2020, 51(3): 249-259. DOI: 10.11665/j.issn.1000-5048.20200301
    [4]CHEN Xing, KANG Yang, WU Jun. Advances in biodegradable functional polymers based protein drug delivery system[J]. Journal of China Pharmaceutical University, 2017, 48(2): 142-149. DOI: 10.11665/j.issn.1000-5048.20170203
    [5]SU Zhigui, MO Ran, ZHANG Can. Advances of nano-drug delivery systems overcoming the physiological and pathological barriers of tumor[J]. Journal of China Pharmaceutical University, 2015, 46(1): 28-39. DOI: 10.11665/j.issn.1000-5048.20150103
    [6]YIN Lei, WANG Ying, CHEN Song, GAO Xiangdong. Advances of glucagon-like peptide-1 receptor agonists in the treatment of nervous system diseases[J]. Journal of China Pharmaceutical University, 2014, 45(4): 383-391. DOI: 10.11665/j.issn.1000-5048.20140401
    [7]WANG Yazhe, ZHOU Jianping, DING Yang, WANG Wei. Advances in research of biomimetic drug delivery systems[J]. Journal of China Pharmaceutical University, 2014, 45(3): 267-273. DOI: 10.11665/j.issn.1000-5048.20140303
    [8]WANG Juan, LIAO Hong. Advances in drug research and development through directed differentiation of stem cells[J]. Journal of China Pharmaceutical University, 2011, 42(3): 193-197.
    [9]XU Si-sheng, ZHANG Hui-bin, ZHOU Jin-pei, HUANG Jian-jun. Advances of new antidiabetic drugs[J]. Journal of China Pharmaceutical University, 2011, 42(2): 97-106.
    [10]Advances and Prospects of Drug Discovery and Development Zhang Yihua, Peng Sixun, Hua Weiyi[J]. Journal of China Pharmaceutical University, 1999, (2): 75-80.
  • Cited by

    Periodical cited type(6)

    1. 金伟斌,陈礼峰,唐倩倩,顾晓风. 顶空气相色谱法测定生脉注射液中甲醛和乙醛的含量. 中国合理用药探索. 2022(06): 115-120 .
    2. 李浩宇,唐宝强,何东升,涂家生. 气相色谱法测定药用辅料聚西托醇1000中的残留杂质. 中国药科大学学报. 2022(03): 293-299 . 本站查看
    3. 王贺,钱利武,阚红卫. 药用辅料监管法规、质量标准现状分析及应对措施. 中南药学. 2022(08): 1937-1941 .
    4. 庞丽然,贺丞,杜力,刘国芳. 重组蛋白中吐温80含量硫氰酸铵钴显色检测法的改进及验证. 中国生物制品学杂志. 2021(09): 1111-1113+1119 .
    5. 郑永强,付俊伟,朱慧敏,陶晓军. 一种用于实现脑靶向的负载长春新碱抗肿瘤纳米药物制剂的制备及表征. 肿瘤药学. 2021(05): 547-553 .
    6. 黄婧,吴宏伟. 依诺沙星滴眼液辅料及药包材相容性研究. 中国现代应用药学. 2021(22): 2802-2806 .

    Other cited types(2)

Catalog

    Article views (115) PDF downloads (335) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return