Citation: | WU Yue, CHEN Yijun. Recent progress of functional impacts of ubiquitin-like modifications on ribosomal proteins[J]. Journal of China Pharmaceutical University, 2022, 53(5): 507-517. DOI: 10.11665/j.issn.1000-5048.20220501 |
[1] |
. Annu Rev Biochem,2019,88:281-306.
|
[2] |
de la Cruz J,Gómez-Herreros F,Rodríguez-Galán O,et al. Feedback regulation of ribosome assembly[J]. Curr Genet,2018,64(2):393-404.
|
[3] |
Ramu VS,Dawane A,Lee S,et al. Ribosomal protein QM/RPL10 positively regulates defence and protein translation mechanisms during nonhost disease resistance[J]. Mol Plant Pathol,2020,21(11):1481-1494.
|
[4] |
Johnson AG,Flynn RA,Lapointe CP,et al. A memory of ES25 loss drives resistance phenotypes[J]. Nucleic Acids Res,2020,48(13):7279-7297.
|
[5] |
Li YY,Zhang JT,Sun HL,et al. Lnc-Rps4l-encoded peptide RPS4XL regulates RPS6 phosphorylation and inhibits the proliferation of PASMCs caused by hypoxia[J]. Mol Ther,2021,29(4):1411-1424.
|
[6] |
Jung JH,Lee H,Kim JH,et al. p53-dependent apoptotic effect of puromycin via binding of ribosomal protein L5 and L11 to MDM2 and its combination effect with RITA or doxorubicin[J]. Cancers,2019,11(4):582.
|
[7] |
Ebright RY,Lee S,Wittner BS,et al. Deregulation of ribosomal protein expression and translation promotes breast cancer metastasis[J]. Science,2020,367(6485):1468-1473.
|
[8] |
Park YJ,Kim SH,Kim TS,et al. Ribosomal protein S3 associates with the TFIIH complex and positively regulates nucleotide excision repair[J]. Cell Mol Life Sci,2021,78(7):3591-3606.
|
[9] |
Odintsova TI,Müller EC,Ivanov AV,et al. Characterization and analysis of posttranslational modifications of the human large cytoplasmic ribosomal subunit proteins by mass spectrometry and Edman sequencing[J]. J Protein Chem,2003,22(3):249-258.
|
[10] |
Wirth M,Schick M,Keller U,et al. Ubiquitination and ubiquitin-like modifications in multiple myeloma:biology and therapy[J]. Cancers,2020,12(12):3764.
|
[11] |
Lezzerini M,Penzo M,O′Donohue MF,et al. Ribosomal protein gene RPL9 variants can differentially impair ribosome function and cellular metabolism[J]. Nucleic Acids Res,2019,48(2):770-787.
|
[12] |
Guan JY,Han SC,Wu JE,et al. Ribosomal protein L13 participates in innate immune response induced by foot-and-mouth disease virus[J]. Front Immunol,2021,12:616402.
|
[13] |
Liu PY,Tee AE,Milazzo G,et al. The long noncoding RNA lncNB1 promotes tumorigenesis by interacting with ribosomal protein RPL35[J]. Nat Commun,2019,10:5026.
|
[14] |
Ribezzo F,Snoeren IAM,Ziegler S,et al. Rps14,Csnk1a1 and miRNA145/miRNA146a deficiency cooperate in the clinical phenotype and activation of the innate immune system in the 5q-syndrome[J]. Leukemia,2019,33(7):1759-1772.
|
[15] |
Swatek KN,Komander D. Ubiquitin modifications[J]. Cell Res,2016,26(4):399-422.
|
[16] |
Park J,Cho J,Song EJ. Ubiquitin-proteasome system (UPS) as a target for anticancer treatment[J]. Arch Pharm Res,2020,43(11):1144-1161.
|
[17] |
Dougherty SE,Maduka AO,Inada T,et al. Expanding role of ubiquitin in translational control[J]. Int J Mol Sci,2020,21(3):1151.
|
[18] |
Cappadocia L,Lima CD. Ubiquitin-like protein conjugation:structures,chemistry,and mechanism[J]. Chem Rev,2018,118(3):889-918.
|
[19] |
Oh JG,Watanabe S,Lee A,et al. miR-146a suppresses SUMO1 expression and induces cardiac dysfunction in maladaptive hypertrophy[J]. Circ Res,2018,123(6):673-685.
|
[20] |
Lin H,Yan Y,Luo YF,et al. IP6-assisted CSN-COP1 competition regulates a CRL4-ETV5 proteolytic checkpoint to safeguard glucose-induced insulin secretion[J]. Nat Commun,2021,12:2461.
|
[21] |
Yang JJ,Zhou YL,Xie SD,et al. Metformin induces Ferroptosis by inhibiting UFMylation of SLC7A11 in breast cancer[J]. J Exp Clin Cancer Res,2021,40(1):206.
|
[22] |
Xirodimas DP,Sundqvist A,Nakamura A,et al. Ribosomal proteins are targets for the NEDD8 pathway[J]. EMBO Rep,2008,9(3):280-286.
|
[23] |
Müller S,Ledl A,Schmidt D. SUMO:a regulator of gene expression and genome integrity[J]. Oncogene,2004,23(11):1998-2008.
|
[24] |
Wang LL,Wansleeben C,Zhao SL,et al. SUMO2 is essential while SUMO3 is dispensable for mouse embryonic development[J]. EMBO Rep,2014,15(8):878-885.
|
[25] |
Zhao XL. SUMO-mediated regulation of nuclear functions and signaling processes[J]. Mol Cell,2018,71(3):409-418.
|
[26] |
Bernier-Villamor V,Sampson DA,Matunis MJ,et al. Structural basis for E2-mediated SUMO conjugation revealed by a complex between ubiquitin-conjugating enzyme Ubc9 and RanGAP1[J]. Cell,2002,108(3):345-356.
|
[27] |
Wang TS,Cao Y,Zheng Q,et al. SENP1-Sirt3 signaling controls mitochondrial protein acetylation and metabolism[J]. Mol Cell,2019,75(4):823-834.e5.
|
[28] |
Peng Y,Wang ZX,Wang ZQ,et al. SUMOylation down-regulates rDNA transcription by repressing expression of upstream-binding factor and proto-oncogene c-Myc[J]. J Biol Chem,2019,294(50):19155-19166.
|
[29] |
Schneeweis C,Hassan Z,Schick M,et al. The SUMO pathway in pancreatic cancer:insights and inhibition[J]. Br J Cancer,2021,124(3):531-538.
|
[30] |
Jang CY,Shin HS,Kim HD,et al. Ribosomal protein S3 is stabilized by sumoylation[J]. Biochem Biophys Res Commun,2011,414(3):523-527.
|
[31] |
Kasera M,Ingole KD,Rampuria S,et al. Global sumoylome adjustments in basal defenses of arabidopsis thaliana involve complex interplay between small-ubiquitin like modifiers and the negative immune regulator suppressor of rps4-rld1[J]. Front Cell Dev Biol,2021,9:680760.
|
[32] |
Haindl M,Harasim T,Eick D,et al. The nucleolar SUMO-specific protease SENP3 reverses SUMO modification of nucleophosmin and is required for rRNA processing[J]. EMBO Rep,2008,9(3):273-279.
|
[33] |
Matafora V,D''Amato A,Mori S,et al. Proteomics analysis of nucleolar SUMO-1 target proteins upon proteasome inhibition[J]. Mol Cell Proteom,2009,8(10):2243-2255.
|
[34] |
Enchev RI,Schulman BA,Peter M. Protein neddylation:beyond cullin–RING ligases[J]. Nat Rev Mol Cell Biol,2015,16(1):30-44.
|
[35] |
Li J,Zou JQ,Littlejohn R,et al. Neddylation,an emerging mechanism regulating cardiac development and function[J]. Front Physiol,2020,11:612927.
|
[36] |
Zou T,Zhang JY. Diverse and pivotal roles of neddylation in metabolism and immunity[J]. FEBS J,2021,288(13):3884-3912.
|
[37] |
Song QQ,Feng SQ,Peng WJ,et al. Cullin-RING ligases as promising targets for gastric carcinoma treatment[J]. Pharmacol Res,2021,170:105493.
|
[38] |
Baek K,Scott DC,Schulman BA. NEDD8 and ubiquitin ligation by cullin-RING E3 ligases[J]. Curr Opin Struct Biol,2021,67:101-109.
|
[39] |
Pan ZQ,Kentsis A,Dias DC,et al. Nedd8 on cullin:building an expressway to protein destruction[J]. Oncogene,2004,23(11):1985-1997.
|
[40] |
Li QM,Wang SZ. Advances of relationship between protein Neddylation and cancer[J]. J China Pharm Univ(中国药科大学学报),2018,49(3):272-278.
|
[41] |
Zhang SZ,Sun Y. Cullin RING ligase 5 (CRL-5):neddylation activation and biological functions[J]. Adv Exp Med Biol,2020,1217:261-283.
|
[42] |
Dubiel W,Chaithongyot S,Dubiel D,et al. The COP9 signalosome:a multi-DUB complex[J]. Biomolecules,2020,10(7):1082.
|
[43] |
Liu Y,Deisenroth C,Zhang YP. RP-MDM2-p53 pathway:linking ribosomal biogenesis and tumor surveillance[J]. Trends Cancer,2016,2(4):191-204.
|
[44] |
Xiong XF,Cui DR,Bi YL,et al. Neddylation modification of ribosomal protein RPS27L or RPS27 by MDM2 or NEDP1 regulates cancer cell survival[J]. FASEB J,2020,34(10):13419-13429.
|
[45] |
Sundqvist A,Liu G,Mirsaliotis A,et al. Regulation of nucleolar signalling to p53 through NEDDylation of L11[J]. EMBO Rep,2009,10(10):1132-1139.
|
[46] |
Zhou X,Hao Q,Liao J,et al. Ribosomal protein S14 unties the MDM2–p53 loop upon ribosomal stress[J]. Oncogene,2013,32(3):388-396.
|
[47] |
Zhang J,Bai D,Ma X,et al. hCINAP is a novel regulator of ribosomal protein-HDM2-p53 pathway by controlling NEDDylation of ribosomal protein S14[J]. Oncogene,2014,33(2):246-254.
|
[48] |
Mahata B,Sundqvist A,Xirodimas DP. Recruitment of RPL11 at promoter sites of p53-regulated genes upon nucleolar stress through NEDD8 and in an Mdm2-dependent manner[J]. Oncogene,2012,31(25):3060-3071.
|
[49] |
Yang R,Wang HM,Kang BX,et al. CDK5RAP3,a UFL1 substrate adaptor,is crucial for liver development[J]. Development,2019,146(2):
|
[50] |
Banerjee S,Kumar M,Wiener R. Decrypting UFMylation:how proteins are modified with UFM1[J]. Biomolecules,2020,10(10):1442.
|
[51] |
Walczak CP,Leto DE,Zhang LC,et al. Ribosomal protein RPL26 is the principal target of UFMylation[J]. Proc Natl Acad Sci U S A,2019,116(4):1299-1308.
|
[52] |
Kumar M,Padala P,Fahoum J,et al. Structural basis for UFM1 transfer from UBA5 to UFC1[J]. Nat Commun,2021,12:5708.
|
[53] |
Xie Z,Fang Z,Pan ZZ. Ufl1/RCAD,a Ufm1 E3 ligase,has an intricate connection with ER stress[J]. Int J Biol Macromol,2019,135:760-767.
|
[54] |
Wei Y,Xu XZ. UFMylation:a unique & fashionable modification for life[J]. Genom Proteom Bioinform,2016,14(3):140-146.
|
[55] |
Witting KF,Mulder MPC. Highly specialized ubiquitin-like modifications:shedding light into the UFM1 Enigma[J]. Biomolecules,2021,11(2):255.
|
[56] |
Zheng N,Shabek N. Ubiquitin ligases:structure,function,and regulation[J]. Annu Rev Biochem,2017,86:129-157.
|
[57] |
Yoo HM,Kang SH,Kim JY,et al. Modification of ASC1 by UFM1 is crucial for ERα transactivation and breast cancer development[J]. Mol Cell,2014,56(2):261-274.
|
[58] |
Wang LH,Xu Y,Rogers H,et al. UFMylation of RPL26 links translocation-associated quality control to endoplasmic reticulum protein homeostasis[J]. Cell Res,2020,30(1):5-20.
|
[59] |
Simsek D,Tiu GC,Flynn RA,et al. The mammalian ribo-interactome reveals ribosome functional diversity and heterogeneity[J]. Cell,2017,169(6):1051-1065.e18.
|
[60] |
Schuren ABC,Boer IGJ,Bouma EM,et al. The UFM1 pathway impacts HCMV US2-mediated degradation of HLA class I[J]. Molecules,2021,26(2):287.
|
[61] |
van der Veen AG,Ploegh HL. Ubiquitin-like proteins[J]. Annu Rev Biochem,2012,81:323-357.
|
[62] |
Perng YC,Lenschow DJ. ISG15 in antiviral immunity and beyond[J]. Nat Rev Microbiol,2018,16(7):423-439.
|
[63] |
Mustachio LM,Lu Y,Kawakami M,et al. Evidence for the ISG15-specific deubiquitinase USP18 as an antineoplastic target[J]. Cancer Res,2018,78(3):587-592.
|
[64] |
Freitas BT,Scholte FEM,Bergeron é,et al. How ISG15 combats viral infection[J]. Virus Res,2020,286:198036.
|
[65] |
Theng SS,Wang W,Mah WC,et al. Disruption of FAT10-MAD2 binding inhibits tumor progression[J]. Proc Natl Acad Sci U S A,2014,111(49):E5282-E5291.
|
[66] |
Aichem A,Groettrup M. The ubiquitin-like modifier FAT10-much more than a proteasome-targeting signal[J]. J Cell Sci,2020,133(14):
|
[67] |
Lim CB,Zhang DW,Lee CGL. FAT10,a gene up-regulated in various cancers,is cell-cycle regulated[J]. Cell Div,2006,1:20.
|
[68] |
Aichem A,Pelzer C,Lukasiak S,et al. USE1 is a bispecific conjugating enzyme for ubiquitin and FAT10,which FAT10ylates itself in cis[J]. Nat Commun,2010,1:13.
|
[69] |
Aichem A,Catone N,Groettrup M. Investigations into the auto-FAT10ylation of the bispecific E2 conjugating enzyme UBA6-specific E2 enzyme 1[J]. FEBS J,2014,281(7):1848-1859.
|
[70] |
Okumura F,Zou W,Zhang DE. ISG15 modification of the eIF4E cognate 4EHP enhances cap structure-binding activity of 4EHP[J]. Genes Dev,2007,21(3):255-260.
|
[71] |
Spinnenhirn V,Bitzer A,Aichem A,et al. Newly translated proteins are substrates for ubiquitin,ISG15,and FAT10[J]. FEBS Lett,2017,591(1):186-195.
|
[72] |
Nahorski MS,Maddirevula S,Ishimura R,et al. Biallelic UFM1 and UFC1 mutations expand the essential role of UFMylation in brain development[J]. Brain,2018,141(7):1934-1945.
|
[73] |
Su M,Yue ZH,Wang H,et al. UFMylation is activated in vascular remodeling and lipopolysaccharide-induced endothelial cell injury[J]. DNA Cell Biol,2018,37(5):426-431.
|
[74] |
Lin YL,Chung CL,Chen MH,et al. SUMO protease SMT7 modulates ribosomal protein L30 and regulates cell-size checkpoint function[J]. Plant Cell,2020,32(4):1285-1307.
|
[75] |
El Motiam A,Vidal S,de la Cruz-Herrera CF,et al. Interplay between SUMOylation and NEDDylation regulates RPL11 localization and function[J]. FASEB J,2019,33(1):643-651.
|
[76] |
Liang JR,Lingeman E,Luong T,et al. A genome-wide ER-phagy screen highlights key roles of mitochondrial metabolism and ER-resident UFMylation[J]. Cell,2020,180(6):1160-1177.e20.
|
[77] |
Fernández A,Ordó?ez R,Reiter RJ,et al. Melatonin and endoplasmic reticulum stress:relation to autophagy and apoptosis[J]. J Pineal Res,2015,59(3):292-307.
|
[78] |
Bailly A,Perrin A,Bou Malhab LJ,et al. The NEDD8 inhibitor MLN4924 increases the size of the nucleolus and activates p53 through the ribosomal-Mdm2 pathway[J]. Oncogene,2016,35(4):415-426.
|
[79] |
Chang SC,Ding JL. Ubiquitination and SUMOylation in the chronic inflammatory tumor microenvironment[J]. Biochim Biophys Acta Rev Cancer,2018,1870(2):165-175.
|
[80] |
Baek K,Krist DT,Prabu JR,et al. NEDD8 nucleates a multivalent cullin-RING-UBE2D ubiquitin ligation assembly[J]. Nature,2020,578(7795):461-466.
|
[81] |
Liu J,Guan D,Dong MG,et al. UFMylation maintains tumour suppressor p53 stability by antagonizing its ubiquitination[J]. Nat Cell Biol,2020,22(9):1056-1063.
|
[82] |
Wang FT,Zhao B. UBA6 and its bispecific pathways for ubiquitin and FAT10[J]. Int J Mol Sci,2019,20(9):2250.
|
[83] |
Laplaza JM,Bostick M,Scholes DT,et al. Saccharomyces cerevisiae ubiquitin-like protein Rub1 conjugates to cullin proteins Rtt101 and Cul3 in vivo[J]. Biochem J,2004,377(
|
[84] |
Petroski MD,Deshaies RJ. Function and regulation of cullin-RING ubiquitin ligases[J]. Nat Rev Mol Cell Biol,2005,6(1):9-20.
|
[85] |
Sun XX,Chen YX,Su YL,et al. SUMO protease SENP1 deSUMOylates and stabilizes c-myc[J]. Proc Natl Acad Sci U S A,2018,115(43):10983-10988.
|
[86] |
Han SJ,Shin H,Oh JW,et al. The protein neddylation inhibitor MLN4924 suppresses patient-derived glioblastoma cells via inhibition of ERK and AKT signaling[J]. Cancers,2019,11(12):1849.
|
[87] |
Xie P,Peng ZQ,Chen YJ,et al. Neddylation of PTEN regulates its nuclear import and promotes tumor development[J]. Cell Res,2021,31(3):291-311.
|
[88] |
Sharma P,Kuehn MR. SENP1-modulated sumoylation regulates retinoblastoma protein (RB) and Lamin A/C interaction and stabilization[J]. Oncogene,2016,35(50):6429-6438.
|
[89] |
Barbier-Torres L,Delgado TC,García-Rodríguez JL,et al. Stabilization of LKB1 and Akt by neddylation regulates energy metabolism in liver cancer[J]. Oncotarget,2015,6(4):2509-2523.
|
[90] |
Lee JS,Chu IS,Heo J,et al. Classification and prediction of survival in hepatocellular carcinoma by gene expression profiling[J]. Hepatology,2004,40(3):667-676.
|
[91] |
Kukkula A,Ojala VK,Mendez LM,et al. Therapeutic potential of targeting the SUMO pathway in cancer[J]. Cancers,2021,13(17):4402.
|
[92] |
Wiechmann S,G?rtner A,Kniss A,et al. Site-specific inhibition of the small ubiquitin-like modifier (SUMO)-conjugating enzyme Ubc9 selectively impairs SUMO chain formation[J]. J Biol Chem,2017,292(37):15340-15351.
|
[93] |
Yu Q,Jiang YH,Sun Y. Anticancer drug discovery by targeting cullin neddylation[J]. Acta Pharm Sin B,2020,10(5):746-765.
|
[94] |
da Silva SR,Paiva SL,Lukkarila JL,et al. Exploring a new frontier in cancer treatment:targeting the ubiquitin and ubiquitin-like activating enzymes[J]. J Med Chem,2013,56(6):2165-2177.
|
[95] |
Zhou LS,Jiang YY,Luo Q,et al. Neddylation:a novel modulator of the tumor microenvironment[J]. Mol Cancer,2019,18(1):77.
|
[96] |
Shi C,Wang Y,Guo YN,et al. Cooperative down-regulation of ribosomal protein L10 and NF-κB signaling pathway is responsible for the anti-proliferative effects by DMAPT in pancreatic cancer cells[J]. Oncotarget,2017,8(21):35009-35018.
|
[97] |
Fan JB,Arimoto KL,Motamedchaboki K,et al. Identification and characterization of a novel ISG15-ubiquitin mixed chain and its role in regulating protein homeostasis[J]. Sci Rep,2015,5:12704.
|
[98] |
Carter SA,Vousden KH. p53-ubl fusions as models of ubiquitination,sumoylation and neddylation of p53[J]. Cell Cycle,2008,7(16):2519-2528.
|
[99] |
El-Asmi F,McManus FP,Brantis-de-Carvalho CE,et al. Cross-talk between SUMOylation and ISGylation in response to interferon[J]. Cytokine,2020,129:155025.
|
[1] | ZHAO Xiujuan, YANG Hengli, WU Jinye, ZHENG Xiaoqi, ZHANG Yaoping, LIN Yuping, HU Chunyan. Synthesis and anti-inflammatory activity of three series of coumarin-based derivatives[J]. Journal of China Pharmaceutical University, 2025, 56(1): 40-48. DOI: 10.11665/j.issn.1000-5048.2024072101 |
[2] | SHEN Yunhong, CHEN Hongjie, MAO Zewei, HUANG Zhengxiao, HU Chunyan. Synthesis and antifungal evaluation of chalcone derivatives combined with fluconazole against drug-resistant Candida albicans[J]. Journal of China Pharmaceutical University, 2023, 54(5): 564-568. DOI: 10.11665/j.issn.1000-5048.2023041002 |
[3] | WANG Mengxiao, MA Lingman, LIU Hanhan, JIANG Meiling, DOU Jie, ZHOU Changlin. Effective antimicrobial activity of Cbf-14-2 against penicillin-resistant bacteria in vitro and in vivo[J]. Journal of China Pharmaceutical University, 2017, 48(4): 496-502. DOI: 10.11665/j.issn.1000-5048.20170416 |
[4] | TANG Yong, LIAO Shengrong, LI Jinsheng, LIU Yonghong. Design, synthesis and cytotoxic activities of fluorine-containing 2, 5-diketopiperazine derivatives[J]. Journal of China Pharmaceutical University, 2016, 47(4): 412-421. DOI: 10.11665/j.issn.1000-5048.20160405 |
[5] | ZHANG Qian, CHEN Cen, YANG Fengqing, XIA Zhining. Mechanism of agonist-induced platelet activation and research progress of anti-platelet drugs[J]. Journal of China Pharmaceutical University, 2014, 45(6): 632-648. DOI: 10.11665/j.issn.1000-5048.20140604 |
[6] | LI Bing, LI Bo, ZHOU Changlin. Progress on antimicrobial peptides against drug-resistant bacterial infection[J]. Journal of China Pharmaceutical University, 2014, 45(5): 580-586. DOI: 10.11665/j.issn.1000-5048.20140514 |
[7] | WU Mingming, FANG Lei, GOU Shaohua, CHEN Li. 以2-甲基-2-取代苯氧基丙酸为离去基团的铂(Ⅱ)配合物的合成、表征及细胞毒活性[J]. Journal of China Pharmaceutical University, 2013, 44(4): 303-306. DOI: 10.11665/j.issn.1000-5048.20130403 |
[8] | Advances in the research of anti-tuberculosis drugs[J]. Journal of China Pharmaceutical University, 2010, 41(4): 299-305. |
[9] | MIAO You-pan, LI Ai-xiu, LIU Tao, WU Ke-zhu. Molecular designing strategies of anti-drug-resistant HIV-1 protease inhibitors[J]. Journal of China Pharmaceutical University, 2009, 40(3): 279-283. |
[10] | Structure-Cytotoxic Activity Relationships of Diterpenoid Tanshinones from Salvias[J]. Journal of China Pharmaceutical University, 2002, (1): 8-14. |