• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
TIAN Zhixin. Progresses of mass spectrometry-based analysis of N-glycoproteins[J]. Journal of China Pharmaceutical University, 2023, 54(6): 662-673. DOI: 10.11665/j.issn.1000-5048.2023062701
Citation: TIAN Zhixin. Progresses of mass spectrometry-based analysis of N-glycoproteins[J]. Journal of China Pharmaceutical University, 2023, 54(6): 662-673. DOI: 10.11665/j.issn.1000-5048.2023062701

Progresses of mass spectrometry-based analysis of N-glycoproteins

Funds: This study was supported by the National Natural Science Foundation of China (No.22074105, No.21775110, No.21575104)
More Information
  • Received Date: June 26, 2023
  • Revised Date: December 10, 2023
  • N-linked glycosylation is a common post-translational modification on proteins, which exhibits the same macro-heterogeneity of modification site as other small molecule modifications (such as methylation, acetylation, phosphorylation), i.e., the amino acid sequence of a protein has multiple putative modification sites. However, compared to small molecule modifications with single structures, N-glycosylation modification have tens of thousands of structures from multiple structural dimensions such as different monosaccharide compositions, sequence structures, linking structures, isomerism, and three-dimensional conformation.This results in additional micro-heterogeneity of modification site of N-glycosylation, i.e., the same N-glycosylation site can be modified with different glycans with a certain stoichiometric ratio.N-glycosylation modification regulates the structure and function of N-glycoproteins in a site- and structure-specific manner, and differential expression of N-glycosylation under disease conditions needs to be characterized through site- and structure-specific quantitative analysis.This article mainly introduces the latest development of mass spectrometry-based site- and structure-specific quantitative N-glycoproteomics and its applications in biomedical fields.
  • [1]
    Shi XJ, Zhang DQ, Li F, et al. Targeting glycosylation of PD-1 to enhance CAR-T cell cytotoxicity[J]. J Hematol Oncol, 2019, 12(1): 127.
    [2]
    Wang YN, Lee HH, Hsu JL, et al. The impact of PD-L1 N-linked glycosylation on cancer therapy and clinical diagnosis[J]. J Biomed Sci, 2020, 27(1): 77.
    [3]
    Sato Y, Nakata K, Kato Y, et al. Early recognition of hepatocellular carcinoma based on altered profiles of alpha-fetoprotein[J]. N Engl J Med, 1993, 328(25): 1802-1806.
    [4]
    Bournazos S, Vo HTM, Duong V, et al. Antibody fucosylation predicts disease severity in secondary dengue infection[J]. Science, 2021, 372(6546): 1102-1105.
    [5]
    Pickard JM, Maurice CF, Kinnebrew MA, et al. Rapid fucosylation of intestinal epithelium sustains host-commensal symbiosis in sickness[J]. Nature, 2014, 514(7524): 638-641.
    [6]
    Coyne MJ, Reinap B, Lee MM, et al. Human symbionts use a host-like pathway for surface fucosylation[J]. Science, 2005, 307(5716): 1778-1781.
    [7]
    Kaneko Y, Nimmerjahn F, Ravetch JV. Anti-inflammatory acti-vity of immunoglobulin G resulting from Fc sialylation[J]. Science, 2006, 313(5787): 670-673.
    [8]
    Shade KT C, Conroy ME, Washburn N, et al. Sialylation of immunoglobulin E is a determinant of allergic pathogenicity[J]. Nature, 2020, 582(7811): 265-270.
    [9]
    Yao YK, Kim G, Shafer S, et al. Mucus sialylation determines intestinal host-commensal homeostasis[J]. Cell, 2022, 185(7): 1172-1188.e28.
    [10]
    Xiao KJ, Han YY, Tian ZX. Large-scale identification and visualization of human liver N-glycome enriched from LO2 cells[J]. Anal Bioanal Chem, 2018, 410(17): 4195-4202.
    [11]
    Xiao KJ, Wang Y, Shen Y, et al. Large-scale identification and visualization of N-glycans with primary structures using GlySeeker[J]. Rapid Commun Mass Spectrom, 2018, 32(2): 142-148.
    [12]
    Mun DG, Bhin J, Kim S, et al. Proteogenomic characterization of human early-onset gastric cancer[J]. Cancer Cell, 2019, 35(1): 111-124.e10.
    [13]
    Shen Y, You YW, Xiao KJ, et al. Large-scale identification and fragmentation pathways analysis of N-glycans from mouse brain[J]. J Am Soc Mass Spectrom, 2019, 30(7): 1254-1261.
    [14]
    Xiao KJ, Han YY, Yang HL, et al. Mass spectrometry-based qualitative and quantitative N-glycomics: an update of 2017-2018[J]. Anal Chim Acta, 2019, 1091: 1-22.
    [15]
    Qin SS, Qin SD, Tian ZX. Progresses in mass spectrometry-based plant N-glycomics and N-glycoproteomics[J]. Int J Mass Spectrom, 2022, 481: 116917.
    [16]
    Lu HR, Xiao KJ, Tian ZX. Benchmark of site- and structure-specific quantitative tissue N-glycoproteomics for discovery of potential N-glycoprotein markers: a case study of pancreatic cancer[J]. Glycoconj J, 2021, 38(2): 213-231.
    [17]
    Qin SS, Qin SD, Tian ZX. Comprehensive site- and structure-specific characterization of N-glycosylation in model plant Arabidopsis using mass-spectrometry-based N-glycoproteomics[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2022, 1198: 123234.
    [18]
    Qin SD, Tian ZX. Gain-of-glycosylation in breast multi-drug-resistant MCF-7 adenocarcinoma cells and cancer stem cells characterized by site- and structure-specific N-glycoproteomics[J]. Anal Chim Acta, 2023, 1252: 341029.
    [19]
    Gong YQ, Qin SD, Dai LZ, et al. The glycosylation in SARS-CoV-2 and its receptor ACE2[J]. Signal Transduct Target Ther, 2021, 6(1): 396.
    [20]
    Xiao KJ, Tian ZX. GPSeeker enables quantitative structural N-glycoproteomics for site- and structure-specific characterization of differentially expressed N-glycosylation in hepatocellular carcinoma[J]. J Proteome Res, 2019, 18(7): 2885-2895.
    [21]
    Yang HL, Xu FF, Xiao KJ, et al. N-glycoproteomics study of putative N-glycoprotein biomarkers of drug resistance in MCF-7/ADR cells[J]. Phenomics, 2021, 1(6): 269-284.
    [22]
    Wang Y, Tian ZX. New energy setup strategy for intact N-glycopeptides characterization using higher-energy collisional dissociation[J]. J Am Soc Mass Spectrom, 2020, 31(3): 651-657.
    [23]
    Yang HL, Xu FF, Chen Y, et al. Putative N-glycoprotein markers of MCF-7/ADR cancer stem cells from N-glycoproteomics characterization of the whole cell lysate[J]. Talanta, 2021, 232: 122437.
    [24]
    Wang Y, Xu FF, Chen Y, et al. A quantitative N-glycoproteomics study of cell-surface N-glycoprotein markers of MCF-7/ADR cancer stem cells[J]. Anal Bioanal Chem, 2020, 412(11): 2423-2432.
    [25]
    Wang Y, Xiao KJ, Tian ZX. Quantitative N-glycoproteomics using stable isotopic diethyl labeling[J]. Talanta, 2020, 219: 121359.
    [26]
    Yang HL, Tian ZX. Sialic acid linkage-specific quantitative N-glycoproteomics using selective alkylamidation and multiplex TMT-labeling[J]. Anal Chim Acta, 2022, 1230: 340391.
    [27]
    Wang Y, Xu FF, Xiao KJ, et al. Site- and structure-specific characterization of N-glycoprotein markers of MCF-7 cancer stem cells using isotopic-labelling quantitative N-glycoproteomics[J]. Chem Commun, 2019, 55(55): 7934-7937.
    [28]
    Shen Y, Xiao KJ, Tian ZX. Site- and structure-specific characterization of the human urinary N-glycoproteome with site-determining and structure-diagnostic product ions[J]. Rapid Commun Mass Spectrom, 2021, 35(1): e8952.
    [29]
    Xue BB, Xiao KJ, Wang Y, et al. Site- and structure-specific quantitative N-glycoproteomics study of differential N-glycosylation in MCF-7 cancer cells[J]. J Proteomics, 2020, 212: 103594.
    [30]
    Xiao KJ, Tian ZX. Site- and structure-specific quantitative N-glycoproteomics using RPLC-pentaHILIC separation and the intact N-glycopeptide search engine GPSeeker[J]. Curr Protoc Protein Sci, 2019, 97(1): e94.
    [31]
    Yang HL, Xu FF, Chen Y, et al. Structural N-glycoproteomics characterization of cell-surface N-glycosylation of MCF-7/ADR cancer stem cells[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2023, 1219: 123647.
    [32]
    Bi M, Bai B, Tian ZX. Structure-specific N-glycoproteomics characterization of NIST monoclonal antibody reference material 8671[J]. J Proteome Res, 2022, 21(5): 1276-1284.
    [33]
    Yang JY, Wang W, Chen ZM, et al. A vaccine targeting the RBD of the S protein of SARS-CoV-2 induces protective immunity[J]. Nature, 2020, 586(7830): 572-577.
    [34]
    Li SS, Zhou Y, Xiao KJ, et al. Selective fragmentation of the N-glycan moiety and protein backbone of ribonuclease B on an Orbitrap Fusion Lumos Tribrid mass spectrometer[J]. Rapid Commun Mass Spectrom, 2018, 32(23): 2031-2039.
    [35]
    de Haan N, Pu?i?-Bakovi? M, Novokmet M, et al. Developments and perspectives in high-throughput protein glycomics: enabling the analysis of thousands of samples[J]. Glycobiology, 2022, 32(8): 651-663.
    [36]
    Donohoo KB, Wang JY, Goli M, et al. Advances in mass spectrometry-based glycomics-An update covering the period 2017-2021[J]. Electrophoresis, 2022, 43(1/2): 119-142.
    [37]
    Luo YT, Wang BC, Yi LH, et al. Mesoporous materials for glycopeptide separation [J]. Trends Anal Chem, 22023, 167: 117234.
    [38]
    Reiding KR, Bondt A, Franc V, et al. The benefits of hybrid fragmentation methods for glycoproteomics[J]. Trac Trends Anal Chem, 2018, 108: 260-268.
    [39]
    DelaField DG, Li LJ. Recent advances in analytical approaches for glycan and glycopeptide quantitation[J]. Mol Cell Proteomics, 2021, 20: 100054.
    [40]
    Polasky DA and Nesvizhskii AI. Recent advances in computational algorithms and software for large-scale glycoproteomics [J]. Curr Opin Chem Biol,2023,72:102238.doi:10.1016/j.cbpa. 2022. 102238.
    [41]
    Oliveira T, Thaysen-Andersen M, Packer NH, et al. The hitchhiker’s guide to glycoproteomics[J]. Biochem Soc Trans, 2021, 49(4): 1643-1662.
    [42]
    Bagdonaite I, Malaker SA, Polasky DA, et al. Glycoproteomics[J]. Nat Rev Method Prime, 2022, 2(1): 1-29.
    [43]
    Chau TH, Chernykh A, Kawahara R, et al. Critical considerations in N-glycoproteomics[J]. Curr Opin Chem Biol, 2023, 73: 102272.
    [44]
    Li L, Tian ZX. Interpreting raw biological mass spectra using isotopic mass-to-charge ratio and envelope fingerprinting[J]. Rapid Commun Mass Spectrom, 2013, 27(11): 1267-1277.
    [45]
    Xiao KJ, Yu F, Fang HQ, et al. Accurate and efficient resolution of overlapping isotopic envelopes in protein tandem mass spectra[J]. Sci Rep, 2015, 5: 14755.
    [46]
    Xiao KJ, Yu F, Tian ZX. Top-down protein identification using isotopic envelope fingerprinting[J]. J Proteomics, 2017, 152: 41-47.
    [47]
    Xiao KJ, Shen Y, Li SS, et al. Accurate phosphorylation site localization using phospho-brackets[J]. Anal Chim Acta, 2017, 996: 38-47.
    [48]
    Du YY, Wang Y, Lai ZZ, et al. Study on the differences in N-glycosylation of disease-specific immune and inflammatory proteins between lung cancer and lung benign disease[J]. Basic Clin Med (基础医学与临床), 2020, 40(8): 1096-1102.
  • Related Articles

    [1]YIN Hao, WANG Wei, MIN Qianhao. Advances in mass-encoded probes for multiplex mass spectrometric detection[J]. Journal of China Pharmaceutical University, 2023, 54(6): 706-717. DOI: 10.11665/j.issn.1000-5048.2023062902
    [2]WANG Maolin, GUO Weiwei, ZHENG Yueqin. Advances in fluorescence probes for detection of hydrogen polysulfides[J]. Journal of China Pharmaceutical University, 2023, 54(5): 553-563. DOI: 10.11665/j.issn.1000-5048.2023042804
    [3]CHEN Yue, HAO Meixi, JU Caoyun, ZHANG Can. Design, synthesis and application of AIE fluorescent probe for lipid raft[J]. Journal of China Pharmaceutical University, 2020, 51(5): 514-521. DOI: 10.11665/j.issn.1000-5048.20200502
    [4]GE Yiran, YANG Jian, LI Yuyan, XU Yungen. Advances of near-infrared fluorescent probes for detection of Alzheimer′s disease[J]. Journal of China Pharmaceutical University, 2020, 51(2): 138-151. DOI: 10.11665/j.issn.1000-5048.20200203
    [5]GUO Anping, JIANG Fen, XU Xiaoli, YOU Qidong, LI Yuyan. Design, synthesis and biological application of affinity-based small molecular probe for Hsp90 endoplasmic reticulum paralogue of Grp94[J]. Journal of China Pharmaceutical University, 2019, 50(2): 161-167. DOI: 10.11665/j.issn.1000-5048.20190205
    [6]WANG Shuo, SUN Xiaoyan, CHEN Jinlong. Application of rhodamine-based fluorescent molecular probes in visualization of cellular pyruvic acid[J]. Journal of China Pharmaceutical University, 2018, 49(1): 79-86. DOI: 10.11665/j.issn.1000-5048.20180111
    [7]LI Li, XU Fengguo, CHEN Jinlong. Exploration of enzyme-MnO2 nanosheets hybridization probe for sensitively colorimetric self-indicating of glucose[J]. Journal of China Pharmaceutical University, 2017, 48(4): 453-460. DOI: 10.11665/j.issn.1000-5048.20170410
    [8]ZHOU Lin, LIU Wei, DI Bin, CHEN Jinlong. Synthesis and application of a fluorescent molecular probe for rapid detection of sulfur dioxide residues in traditional Chinese herbs[J]. Journal of China Pharmaceutical University, 2015, 46(4): 444-449. DOI: 10.11665/j.issn.1000-5048.20150410
    [9]ZHAO Zekai, WANG Lu, XUE Jingwei, ZHANG Can. Development of reduction response probes[J]. Journal of China Pharmaceutical University, 2014, 45(5): 535-539. DOI: 10.11665/j.issn.1000-5048.20140505
    [10]ZHAO Bo, CHEN Jiang-ning, ZHANG Jun-feng. Copper (II) fluorescent probe for detecting nitric oxide[J]. Journal of China Pharmaceutical University, 2011, 42(6): 490-494.

Catalog

    Article views (572) PDF downloads (307) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return