Citation: | YIN Hao, WANG Wei, MIN Qianhao. Advances in mass-encoded probes for multiplex mass spectrometric detection[J]. Journal of China Pharmaceutical University, 2023, 54(6): 706-717. DOI: 10.11665/j.issn.1000-5048.2023062902 |
[1] |
Engreitz JM, Haines JE, Perez EM, et al.Local regulation of gene expression by lncRNA promoters, transcription and splicing[J]. Nature, 2016, 539(7629): 452-455.
|
[2] |
Witkos TM, Chan WL, Joensuu M, et al. GORAB scaffolds COPI at the trans-Golgi for efficient enzyme recycling and correct protein glycosylation[J]. Nat Commun, 2019, 10(1): 127.
|
[3] |
Liu R, Zhang SX, Wei C, et al.Metal stable isotope tagging: renaissance of radioimmunoassay for multiplex and absolute quantification of biomolecules[J]. Acc Chem Res, 2016, 49(5): 775-783.
|
[4] |
Suttapitugsakul S, Sun FX, Wu RH. Recent advances in glycoproteomic analysis by mass spectrometry[J]. Anal Chem, 2020, 92(1): 267-291.
|
[5] |
Sejalon-Cipolla M, Bruyat P, Bregant S, et al. Targeting out of range biomolecules: chemical labeling strategies for qualitative and quantitative MALDI MS-based detection[J]. Trac Trends Anal Chem, 2021, 143: 116399.
|
[6] |
Zhang C, Wu FB, Zhang XR. ICP-MS-based competitive immunoassay for the determination of total thyroxin in human serum[J]. J Anal At Spectrom, 2002, 17(10): 1304-1307.
|
[7] |
Li PF, Pang JL, Xu SX, et al. A glycoform-resolved dual-modal ratiometric immunoassay improves the diagnostic precision for hepatocellular carcinoma[J]. Angew Chem Int Ed, 2022, 61(21):
|
[8] |
Kahsai AW, Rajagopal S, Sun JP, et al. Monitoring protein conformational changes and dynamics using stable-isotope labeling and mass spectrometry[J]. Nat Protoc, 2014, 9(6): 1301-1319.
|
[9] |
Messner CB, Demichev V, Bloomfield N, et al. Ultra-fast proteomics with scanning SWATH[J]. Nat Biotechnol, 2021, 39(7): 846-854.
|
[10] |
Liu JY, Jarzabek J, Majonis D, et al. Metal-encoded polystyrene microbeads as a mass cytometry calibration/normalization standard covering channels from yttrium (89 amu) to bismuth (209 amu)[J]. Anal Chem, 2020, 92(1): 999-1006.
|
[11] |
Zhang YF, Zabinyakov N, Majonis D, et al.Tantalum oxide nanoparticle-based mass tag for mass cytometry[J]. Anal Chem, 2020, 92(8): 5741-5749.
|
[12] |
Xu ST, Liu MX, Feng J, et al. One-step hexaplex immunoassays by on-line paper substrate-based electrospray ionization mass spectrometry for combined cancer biomarker screening[J]. Chem Sci, 2021, 12(13): 4916-4924.
|
[13] |
Tam TS, Cheng YH, Lok CN, et al. Surface optimization of gold nanoparticle mass tags for the sensitive detection of protein biomarkers via immuno-capture LI-MS[J]. Analyst, 2020, 145(19): 6237-6242.
|
[14] |
Zhang ZZ, Xu HM, Fan YY, et al. Mass nanotags mediate parallel amplifications on nanointerfaces for multiplexed profiling of RNAs[J]. Nano Lett, 2023, 23(5): 1820-1829.
|
[15] |
Ahmad R, Jang H, Batule BS, et al. Barcode DNA-mediated signal amplifying strategy for ultrasensitive biomolecular detection on matrix-assisted laser desorption ionization time of flight (MALDI-TOF) mass spectrometry[J]. Anal Chem, 2017, 89(17): 8966-8973.
|
[16] |
Li N, Zhang WF, Lin J, et al. A specific mass-tag approach for detection of foodborne pathogens using MALDI-TOF mass spectrometry[J]. Anal Chem, 2022, 94(9): 3963-3969.
|
[17] |
Ferreira MS, de Oliveira DN, Mesquita CC, et al. MALDI-MSI: a fast and reliable method for direct melatonin quantification in biological fluids[J]. J Anal Sci Technol, 2016, 7: 1-6.
|
[18] |
Xu ST, Liu HW, Bai Y. Highly sensitive and multiplexed mass spectrometric immunoassay techniques and clinical applications[J]. Anal Bioanal Chem, 2022, 414(18): 5121-5138.
|
[19] |
Xu ST, Ma W, Bai Y, et al. Ultrasensitive ambient mass spectrometry immunoassays: multiplexed detection of proteins in serum and on cell surfaces[J]. J Am Chem Soc, 2019, 141(1): 72-75.
|
[20] |
Kuang YQ, Cao JX, Xu FF, et al.Duplex-specific nuclease-mediated amplification strategy for mass spectrometry quantification of MiRNA-200c in breast cancer stem cells[J].Anal Chem, 2019, 91(14): 8820-8826.
|
[21] |
Yang YM, Wang WQ, Liu HM, et al. Sensitive quantification of microRNA in blood through multi-amplification toehold-mediated DNA-strand-displacement paper-spray mass spectrometry (TSD-PS MS)[J]. Angew Chem Int Ed, 2022, 61(9):
|
[22] |
Mukherjee P, Berns EJ, Patino CA, et al. Temporal sampling of enzymes from live cells by localized electroporation and quantification of activity by SAMDI mass spectrometry[J].Small, 2020, 16(26):
|
[23] |
Hong SH, Kim JI, Kang H, et al. Detection and quantification of the Bcr/Abl chimeric protein on biochips using LDI-TOF MS[J].Chem Commun, 2014, 50(37): 4831-4834.
|
[24] |
Xu HM, Huang XD, Zhang ZZ, et al. Protease-responsive mass barcoded nanotranslators for simultaneously quantifying the intracellular activity of cascaded caspases in apoptosis pathways[J]. Chem Sci, 2020, 11(20): 5280-5288.
|
[25] |
Anahtar M, Chan LW, Ko H, et al. Host protease activity classifies pneumonia etiology[J]. Proc Natl Acad Sci U S A, 2022, 119(25):
|
[26] |
Jia JH, Ao LJ, Luo YX, et al. Quantum dots assembly enhanced and dual-antigen sandwich structured lateral flow immunoassay of SARS-CoV-2 antibody with simultaneously high sensitivity and specificity[J]. Biosens Bioelectron, 2022, 198: 113810.
|
[27] |
Zhong XQ, Qiao L, Gasilova N, et al. Mass barcode signal amplification for multiplex allergy diagnosis by MALDI-MS[J]. Anal Chem, 2016, 88(12): 6184-6189.
|
[28] |
Zhang XW, Liu MX, He MQ, et al. Integral multielement signals by DNA-programmed UCNP-AuNP nanosatellite assemblies for ultrasensitive ICP-MS detection of exosomal proteins and cancer identification[J]. Anal Chem, 2021, 93(16): 6437-6445.
|
[29] |
Ma W, Xu ST, Nie HG, et al. Bifunctional cleavable probes for in situ multiplexed glycan detection and imaging using mass spectrometry[J]. Chem Sci, 2019, 10(8): 2320-2325.
|
[30] |
Chen X, Song HJ, Li ZY, et al. Lanthanide nanoprobes for the multiplex evaluation of breast cancer biomarkers[J]. Anal Chem, 2021, 93(40): 13719-13726.
|
[31] |
Wang YN, Du RJ, Qiao L, et al. Ultrasensitive profiling of multiple biomarkers from single cells by signal amplification mass spectrometry[J]. Chem Commun, 2018, 54(69): 9659-9662.
|
[32] |
Cheng YH, Cheung YF, Siu-Chung Tam T, et al.Plasmonic metal nanoparticles as efficient mass tags for ion signal amplification and ultrasensitive detection of protein markers[J]. Anal Chim Acta, 2019, 1055: 1-6.
|
[33] |
Zhu ZJ, Ghosh PS, Miranda OR, et al. Multiplexed screening of cellular uptake of gold nanoparticles using laser desorption/ionization mass spectrometry[J]. J Am Chem Soc, 2008, 130(43): 14139-14143.
|
[34] |
Han J, Huang X, Liu HH, et al. Laser cleavable probes for in situ multiplexed glycan detection by single cell mass spectrometry[J]. Chem Sci, 2019, 10(47): 10958-10962.
|
[35] |
He ZY, Chen QS, Chen FM, et al. DNA-mediated cell surface engineering for multiplexed glycan profiling using MALDI-TOF mass spectrometry[J]. Chem Sci, 2016, 7(8): 5448-5452.
|
[36] |
Hu JJ, Liu F, Ju HX. Peptide code-on-a-microplate for protease activity analysis via MALDI-TOF mass spectrometric quantitation[J]. Anal Chem, 2015, 87(8): 4409-4414.
|
[37] |
Hu JJ, Liu F, Ju HX. MALDI-MS patterning of caspase activities and its application in the assessment of drug resistance[J].Angew Chem Int Ed, 2016, 55(23): 6667-6670.
|
[38] |
Kuang YQ, Liu L, Wang ZC, et al. A photocleavable and mass spectrometric DNA-peptide probe enables fast and specific enzyme-free detection of microRNA[J].Talanta, 2020, 211: 120726.
|
[39] |
Wang ZC, Li L, Kuang YQ, et al. Simultaneous quantification of multiple single nucleotide variants in PIK3CA ctDNA using mass-tagged LCR probe sets[J]. Talanta, 2023, 258: 124426.
|
[40] |
Kallemeijn WW, Lanyon-Hogg T, Panyain N, et al. Proteome-wide analysis of protein lipidation using chemical probes: in-gel fluorescence visualization, identification and quantification of N-myristoylation, N- and S-acylation, O-cholesterylation, S-farnesylation and S-geranylgeranylation[J]. Nat Protoc, 2021, 16(11): 5083-5122.
|
[41] |
Xu ST, Liu MX, Bai Y, et al. Multi-dimensional organic mass cytometry: simultaneous analysis of proteins and metabolites on single cells[J]. Angew Chem Int Ed, 2021, 60(4): 1806-1812.
|
[42] |
Liu ZR, Li XT, Xiao GY, et al. Application of inductively coupled plasma mass spectrometry in the quantitative analysis of biomolecules with exogenous tags: a review[J]. Trac Trends Anal Chem, 2017, 93: 78-101.
|
[43] |
Luo YC, Yan XW, Huang YS, et al. ICP-MS-based multiplex and ultrasensitive assay of viruses with lanthanide-coded biospecific tagging and amplification strategies[J]. Anal Chem, 2013, 85(20): 9428-9432.
|
[44] |
Wang CQ, Song HJ, Zhao X, et al. Multiplex DNA walking machines for lung cancer-associated miRNAs[J]. Anal Chem, 2022, 94(3): 1787-1794.
|
[45] |
Kang Q, He M, Chen BB, et al. MNAzyme-catalyzed amplification assay with lanthanide tags for the simultaneous detection of multiple microRNAs by inductively coupled plasma-mass spectrometry[J]. Anal Chem, 2021, 93(2): 737-744.
|
[46] |
Kang Q, Chen BB, He M, et al. Simple amplifier coupled with a lanthanide labeling strategy for multiplexed and specific quantification of microRNAs[J]. Anal Chem, 2022, 94(37): 12934-12941.
|
[47] |
Han GJ, Zhang SC, Xing Z, et al. Absolute and relative quantification of multiplex DNA assays based on an elemental labeling strategy[J]. Angew Chem Int Ed, 2013, 52(5): 1466-1471.
|
[48] |
Liu JY, Wong ECN, Lu E, et al. Control of metal content in polystyrene microbeads prepared with metal complexes of DTPA derivatives[J]. Chem Mater, 2021, 33(10): 3802-3813.
|
[49] |
Dang JQ, Li HX, Zhang LL, et al. New structure mass tag based on Zr-NMOF for multiparameter and sensitive single-cell interrogating in mass cytometry[J].Adv Mater, 2021, 33(35):
|
[50] |
Delgado-Gonzalez A, Laz-Ruiz JA, Cano-Cortes MV, et al.Hybrid fluorescent mass-tag nanotrackers as universal reagents for long-term live-cell barcoding[J]. Anal Chem, 2022, 94(30): 10626-10635.
|
[51] |
Tislevoll BS, Helles?y M, Fagerholt OHE, et al. Early response evaluation by single cell signaling profiling in acute myeloid leukemia[J]. Nat Commun, 2023, 14(1): 115.
|
[52] |
Jin GQ, Sun DE, Xia XQ, et al.Bioorthogonal lanthanide molecular probes for near-infrared fluorescence and mass spectrometry imaging[J].Angew Chem Int Ed, 2022, 61(43):
|
[53] |
Claes BSR, Krestensen KK, Yagnik G, et al.MALDI-IHC-guided In-depth spatial proteomics: targeted and untargeted MSI combined[J]. Anal Chem, 2023, 95(4): 2329-2338.
|
[54] |
Song XW, Zang QC, Li C, et al. Immuno-desorption electrospray ionization mass spectrometry imaging identifies functional macromolecules by using microdroplet-cleavable mass tags[J].Angew Chem Int Ed, 2023, 62(9):
|
[55] |
Rathore R, Corr JJ, Lebre DT, et al. Extending matrix-assisted laser desorption/ionization triple quadrupole mass spectrometry enzyme screening assays to targets with small molecule substrates[J]. Rapid Commun Mass Spectrom, 2009, 23(20): 3293-3300.
|
[56] |
Anderson LL, Berns EJ, Bugga P, et al. Measuring drug metabolism kinetics and drug-drug interactions using self-assembled monolayers for matrix-assisted laser desorption-ionization mass spectrometry[J]. Anal Chem, 2016, 88(17): 8604-8609.
|
[57] |
Kadem LF, Suana KG, Holz M, et al. High-frequency mechanostimulation of cell adhesion[J]. Angew Chem Int Ed, 2017, 56(1): 225-229.
|
[58] |
Kim KL, Kim D, Lee S, et al. Pairwise detection of site-specific receptor phosphorylations using single-molecule blotting[J]. Nat Commun, 2016, 7: 11107.
|
[59] |
Titov DV, Cracan V, Goodman RP, et al. Complementation of mitochondrial electron transport chain by manipulation of the NAD+/NADH ratio[J]. Science, 2016, 352(6282): 231-235.
|
[60] |
Liang Y, Liu Q, Zhou Y, et al. Counting and recognizing single bacterial cells by a lanthanide-encoding inductively coupled plasma mass spectrometric approach[J]. Anal Chem, 2019, 91(13): 8341-8349.
|
[61] |
Wu X, DeGottardi Q, Wu IC, et al. Lanthanide-coordinated semiconducting polymer dots used for flow cytometry and mass cytometry[J]. Angew Chem Int Ed, 2017, 56(47): 14908-14912.
|
[62] |
Ros M, Nguyen AT, Chia J, et al. ER-resident oxidoreductases are glycosylated and trafficked to the cell surface to promote matrix degradation by tumour cells[J]. Nat Cell Biol, 2020, 22(11): 1371-1381.
|
[63] |
Xu HM, Zhang ZZ, Wang YH, et al. Sense and validate: fluorophore/mass dual-encoded nanoprobes for fluorescence imaging and MS quantification of intracellular multiple microRNAs[J].Anal Chem, 2022, 94(16): 6329-6337.
|
[64] |
Jiang LX, Yang MX, Wali SN, et al. High-throughput mass spectrometry imaging of biological systems: current approaches and future directions[J]. Trends Analyt Chem, 2023, 163: 117055.
|
[65] |
Chen SM, Xiong CQ, Liu HH, et al. Mass spectrometry imaging reveals the sub-organ distribution of carbon nanomaterials[J].Nat Nanotechnol, 2015, 10(2): 176-182.
|
[66] |
Xue JJ, Liu HH, Chen SM, et al. Mass spectrometry imaging of the in situ drug release from nanocarriers[J]. Sci Adv, 2018, 4(10):
|
[67] |
Jiang YM, Sun J, Xiong CQ, et al. Mass spectrometry imaging reveals in situ behaviors of multiple components in aerosol particles[J]. Angew Chem Int Ed, 2021, 60(43): 23225-23231.
|
[68] |
Yan B, Kim ST, Kim CS, et al. Multiplexed imaging of nanoparticles in tissues using laser desorption/ionization mass spectrometry[J]. J Am Chem Soc, 2013, 135(34): 12564-12567.
|
[69] |
Elci SG, Yesilbag Tonga G, Yan B, et al. Dual-mode mass spectrometric imaging for determination of in vivo stability of nanoparticle monolayers[J]. ACS Nano, 2017, 11(7): 7424-7430.
|
[70] |
Kwong GA, Ghosh S, Gamboa L, et al. Synthetic biomarkers: a twenty-first century path to early cancer detection[J]. Nat Rev Cancer, 2021, 21(10): 655-668.
|
[71] |
Anahtar M, Chan LW, Ko H, et al. Host protease activity classifies pneumonia etiology[J]. Proc Natl Acad Sci U S A, 2022, 119(25):
|
[72] |
Hao LL, Zhao RT, Welch NL, et al. CRISPR-Cas-amplified urinary biomarkers for multiplexed and portable cancer diagnostics[J]. Nat Nanotechnol, 2023, 18:798-807.
|
[1] | ZHANG Dongxue, QIAO Liang. Microfluidic chip and mass spectrometry-based detection of bacterial antimicrobial resistance and study of antimicrobial resistance mechanism[J]. Journal of China Pharmaceutical University, 2023, 54(6): 695-705. DOI: 10.11665/j.issn.1000-5048.2023060203 |
[2] | LI Mengxiao, LI Huilin. Application of biological mass spectrometry in quality control of adeno-associated virus carrier preparations[J]. Journal of China Pharmaceutical University, 2023, 54(6): 682-694. DOI: 10.11665/j.issn.1000-5048.2023062901 |
[3] | WANG Maolin, GUO Weiwei, ZHENG Yueqin. Advances in fluorescence probes for detection of hydrogen polysulfides[J]. Journal of China Pharmaceutical University, 2023, 54(5): 553-563. DOI: 10.11665/j.issn.1000-5048.2023042804 |
[4] | LIU Lin, HU Tingting, WANG Mengling, NIE Yao, ZHANG Weijie, WANG Chen, ZOU Bingjie, SONG Qinxin, ZHOU Guohua. Advance on detection method and application based on bioluminescence of luciferase[J]. Journal of China Pharmaceutical University, 2023, 54(4): 389-398. DOI: 10.11665/j.issn.1000-5048.2023021401 |
[5] | WU Yubing, YIN Lifang, QIN Chao. Clinical application and detection of matrix metalloproteinases in diagnosis[J]. Journal of China Pharmaceutical University, 2020, 51(5): 614-621. DOI: 10.11665/j.issn.1000-5048.20200514 |
[6] | SHEN Yiyun, QI Xiemin, SONG Qinxin, ZHOU Guohua. Research advances in quantitative detection of single cell protein[J]. Journal of China Pharmaceutical University, 2015, 46(5): 521-531. DOI: 10.11665/j.issn.1000-5048.20150502 |
[7] | ZHU Shenrong, WU Xuri, CHEN Yijun. Current progress in quantitative detection of microRNA[J]. Journal of China Pharmaceutical University, 2015, 46(1): 40-49. DOI: 10.11665/j.issn.1000-5048.20150104 |
[8] | Application Studies on Chromatographic Peak Purity with Photodiode-array Detection[J]. Journal of China Pharmaceutical University, 1993, (5): 290-294. |
[9] | An Experimental Study of Detecting HBcAg in Serum by ELISA[J]. Journal of China Pharmaceutical University, 1992, (3): 165-168. |
[10] | DETERMINATION OF PARACETAMOL IN RABBITS SERUM BY HPLC WITH ELECTRO-CHEMICAL DETECTION[J]. Journal of China Pharmaceutical University, 1987, (4): 290-292. |