• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
ZHANG Ting, LIAO Hang, CHENG Yuting, WU Xiaohong. Preparation and properties of injectable minocycline hydrochloride microsphere depot[J]. Journal of China Pharmaceutical University, 2021, 52(1): 52-59. DOI: 10.11665/j.issn.1000-5048.20210107
Citation: ZHANG Ting, LIAO Hang, CHENG Yuting, WU Xiaohong. Preparation and properties of injectable minocycline hydrochloride microsphere depot[J]. Journal of China Pharmaceutical University, 2021, 52(1): 52-59. DOI: 10.11665/j.issn.1000-5048.20210107

Preparation and properties of injectable minocycline hydrochloride microsphere depot

Funds: This study was supposed by the National Natural Science Foundation of China(No.81970914)
More Information
  • Received Date: August 31, 2020
  • Revised Date: December 06, 2020
  • To prepare a minocycline hydrochloride microsphere depot and evaluate its release performance and physicochemical properties, poly (lactic-co-glycolic acid) (PLGA) was used as raw material, the minocycline hydrochloride microspheres were prepared by electrospray, and the morphology and size distribution of the microspheres were characterized by polarizing microscopy and scanning electron microscopy (SEM). The microspheres were then mixed with sucrose acetate isobutyrate (SAIB) depot at a ratio of 1:10 to form a minocycline hydrochloride microsphere depot, and its release performance and porosity changes were evaluated. The results showed that the microspheres had smooth surface and the diameter was (5.294 ± 1.222) μm. After the microspheres were added into SAIB depot, the burst release of minocycline hydrochloride significantly decreased from 60% to 3.27% at the first day, and then the release lasted for 42 days . Additionally, the porosity of the depot increased rapidly from (12.53 ± 0.43)% to (32.53 ± 0.43)% during days 0-15, and increased slowly from (32.53 ± 0.43)% to (33.81 ± 0.54)% during days 15-45. The minocycline hydrochloride microsphere depot prepared in this study is expected to be an effective way for the application of minocycline hydrochloride for its good release performance and simple preparation process.
  • [1]
    . Lancet, 2005, 366(9499): 1809-1820.
    [2]
    de Oliveira LF, Jorge AO, Dos Santos SS. In vitro minocycline activity on superinfecting microorganisms isolated from chronic periodontitis patients[J]. Braz Oral Res, 2006, 20(3): 202-206.
    [3]
    Vernillo AT, Rifkin BR. Effects of tetracyclines on bone metabolism[J]. Adv Dent Res, 1998, 12(1): 56-62.
    [4]
    Bettany JT, Wolowacz RG. Tetracycline derivatives induce apoptosis selectively in cultured monocytes and macrophages but not in mesenchymal cells[J]. Adv Dent Res, 1998, 12(2): 136-143.
    [5]
    Almazin SM, Dziak R, Andreana S, et al. The effect of doxycycline hyclate, chlorhexidine gluconate, and minocycline hydrochloride on osteoblastic proliferation and differentiation in vitro[J]. J Periodontol, 2009, 80(6): 999-1005.
    [6]
    Shao HY, Zhang YG, Yang X, et al. Effects of inhibitory concentration minocycline on the proliferation, differentiation, and mineralization of osteoblasts[J]. West China J Stomatol(华西口腔医学杂志), 2018, 36(2): 140-145.
    [7]
    Babich H, Tipton DA. In vitro response of human gingival epithelioid S-G cells to minocycline[J]. Toxicol In vitro, 2002, 16(1): 11-21.
    [8]
    Ma YH, Song JL, Almassri HNS, et al. Minocycline-loaded PLGA electrospun membrane prevents alveolar bone loss in experimental peridontitis[J]. Drug Deliv, 2020, 27(1): 151-160.
    [9]
    Okumu FW, Dao le N, Fielder PJ, et al. Sustained delivery of human growth hormone from a novel gel system: SABER[J]. Biomaterials, 2002, 23(22): 4353-4358.
    [10]
    Reynolds RC, Chappel CI. Sucrose acetate isobutyrate (SAIB): historical aspects of its use in beverages and a review of toxicity studies prior to 1988[J]. Food Chem Toxicol, 1998, 36(2): 81-93.
    [11]
    Huang X, Brazel CS. On the importance and mechanisms of burst release in matrix-controlled drug delivery systems[J]. J Control Release, 2001, 73(2/3): 121-136.
    [12]
    Lu YX, Yu YL, Tang X. Sucrose acetate isobutyrate as an in situ forming system for sustained risperidone release[J]. J Pharm Sci, 2007, 96(12): 3252-3262.
    [13]
    Yang X, Almassri HNS, Zhang QY, et al. Electrosprayed naringin-loaded microsphere/SAIB hybrid depots enhance bone formation in a mouse calvarial defect model[J]. Drug Deliv, 2019, 26(1): 137-146.
    [14]
    Yao SL, Liu HY, Yu SK, et al. Drug-nanoencapsulated PLGA microspheres prepared by emulsion electrospray with controlled release behavior[J]. Regen Biomater, 2016, 3(5): 309-317.
    [15]
    Su RN,Fan WJ,Zhang ZQ,et al. Preparation and evaluation of azithromycin-loaded microspheres for oral administration[J]. J China Pharm Univ(中国药科大学学报),2020,51(3):299-304.
    [16]
    Ford VAN,Pack DW,Braatz RD.Mathematical modeling of drug delivery from autocatalytically degradable PLGA microspheres-a review[J]. J Control Release, 2013, 165(1):29-37.
    [17]
    Gu B, Sun XH, Papadimitrakopoulos F, et al. Seeing is believing, PLGA microsphere degradation revealed in PLGA microsphere/PVA hydrogel composites[J]. J Control Release, 2016, 228: 170-178.
    [18]
    Zhang XK,Han W,Fan DZ, et al. Drug release properties of poly (lactic-co-glycolic acid) coatings[J]. J Funct Polym(功能高分子学报),2014,27(2)219-223.
    [19]
    An SB ,Wang LG,Hu YH. Influencing factors of property and drug releasing of drug-loaded poly(D,L-lactide-co-glycolide)microspheres[J]. Chin J Hosp Pharm(中国医院药学杂志),2016,36(13):1140-1144.
    [20]
    Ritger PL, Peppas NA. A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs[J]. J Control Release, 1987, 5(1): 23-36.
    [21]
    Cai XQ, Luan YX, Dong Q, et al. Sustained release of 5-fluorouracil by incorporation into sodium carboxymethylcellulose sub-micron fibers[J]. Int J Pharm, 2011, 419(1/2): 240-246.
    [22]
    Haroosh HJ, Dong Y, Lau KT. Tetracycline hydrochloride (TCH)-loaded drug carrier based on PLA: PCL nanofibre mats: experimental characterisation and release kinetics modelling[J]. J Mater Sci, 2014, 49(18): 6270-6281.
    [23]
    Gibson I, Momeni A, Filiaggi M. Minocycline-loaded calcium polyphosphate glass microspheres as a potential drug-delivery agent for the treatment of periodontitis[J]. J Appl Biomater Funct Mater, 2019, 17(3): 2280800019863637.
    [24]
    Okamoto-Shibayama K, Sekino J, Yoshikawa K, et al. Antimicrobial susceptibility profiles of oral Treponema species[J]. Anaerobe, 2017, 48: 242-248.
    [25]
    Takahashi N, Ishihara K, Kato T, et al. Susceptibility of Actinobacillus actinomycetemcomitans to six antibiotics decreases as biofilm matures[J]. J Antimicrob Chemother, 2007, 59(1): 59-65.
    [26]
    Ren DX,Chen PC,Zheng P, et al. Preparation of poly-γ-glutamic acid/chitosan nanoparticles and pH responsive release properties[J]. J Funct Polym, 2020, 33(1):54-62.
    [27]
    Siepmann J, Elkharraz K, Siepmann F, et al. How autocatalysis accelerates drug release from PLGA-based microparticles: a quantitative treatment[J]. Biomacromolecules, 2005, 6(4): 2312-2319.
    [28]
    Shive MS, Anderson JM. Biodegradation and biocompatibility of PLA and PLGA microspheres[J]. Adv Drug Deliv Rev, 1997, 28(1): 5-24.
    [29]
    Zhou C,Yan YH. Synthesis and degradation of poly (lactic-co-glycolic acid)[J]. Orthop Biomech Mater Clin (生物骨科材料与临床研究) ,2006, 3(5):50-53.
    [30]
    Breitenbach A, Pistel K, Kissel T. Biodegradable comb polyesters. Part II. Erosion and release properties of poly(vinyl alcohol)-g-poly(lactic-co-glycolic acid)[J]. Polymer, 2000, 41(13): 4781-4792.
    [31]
    Lin X, Xu YH, Tang X, et al. A uniform ultra-small microsphere/SAIB hybrid depot with low burst release for long-term continuous drug release[J]. Pharm Res, 2015, 32(11): 3708-3721.
  • Related Articles

    [1]LIN Lin, QI Xiaodong, LI Yongsu, YANG Yubo, YANG Minghua, CHEN Yi, KONG Lingyi, WANG Li. Identification of involatile chemical components from Moutai-flavored distiller’s grains[J]. Journal of China Pharmaceutical University, 2023, 54(4): 461-467. DOI: 10.11665/j.issn.1000-5048.2023040402
    [2]ZHANG Jing, LI Lun, ZHANG Mei, HU Xiaolong, WANG Hao. Research progress in chemical constituent and pharmacological activity of Punica granatum L.[J]. Journal of China Pharmaceutical University, 2023, 54(4): 421-430. DOI: 10.11665/j.issn.1000-5048.2023032101
    [3]SUN Biao, AO Yunlin, WANG Dezhi, WANG Junya, YE Wencai, ZHANG Xiaoqi. Chemical constituents of petroleum ether extract from the stems and leaves of Humulus scandens[J]. Journal of China Pharmaceutical University, 2022, 53(2): 178-184. DOI: 10.11665/j.issn.1000-5048.20220207
    [4]YANG Xiaojun, AI Fengfeng, LIN Junbing, TANG Jiangjiang. Chemical constituents extracted from Dictamnus dasycarpus and their α-glucosidase inhibitory activity[J]. Journal of China Pharmaceutical University, 2019, 50(1): 41-45. DOI: 10.11665/j.issn.1000-5048.20190105
    [5]Pham Thi Anh, LI Junyan, ZHANG Baobao, WANG Hao. Chemical constituents from the n-butanol portions of the fruits of Eucalyptus globulus[J]. Journal of China Pharmaceutical University, 2018, 49(4): 422-426. DOI: 10.11665/j.issn.1000-5048.20180406
    [6]MA Lin, ZHANG Yaozhou, DANG Jun. Chemical constituents from water extract of Armillaria luteo-virens[J]. Journal of China Pharmaceutical University, 2016, 47(3): 291-293. DOI: 10.11665/j.issn.1000-5048.20160307
    [7]YIN Minmin, YIN Zhiqi, ZHANG Jian, WANG Lei, YE Wencai. Chemical constituents from ethyl acetate extract of Cynanchum otophyllum Schneid.[J]. Journal of China Pharmaceutical University, 2013, 44(3): 213-218. DOI: 10.11665/j.issn.1000-5048.20130305
    [8]SUN Jing, YIN Zhi-qi, ZHANG Qing-wen, YE Wen-cai, WANG Yi-ta, ZHAO Shou-xun. Chemical constituents from ethyl acetate extract of Ganoderma lucidum[J]. Journal of China Pharmaceutical University, 2011, 42(3): 220-222.
    [9]Chemical constituents from n-butanol extract of the stems of Lonicera japonica[J]. Journal of China Pharmaceutical University, 2010, 41(4): 333-336.
    [10]Hypoglycemic Effects of Extracts and Constituents from Euonymus alatus[J]. Journal of China Pharmaceutical University, 2003, (2): 32-35.
  • Cited by

    Periodical cited type(3)

    1. 胡彤,李爽,钟卫鸿. 基于酸信号转导系统的细菌耐酸机制及其应用. 生物工程学报. 2024(03): 644-664 .
    2. 吴晓妍,吴剑梅,傅丹丹,涂健,宋祥军,邵颖,祁克宗. hipA对禽致病性大肠杆菌生物学特性和致病性的影响. 西北农林科技大学学报(自然科学版). 2023(08): 11-18+28 .
    3. 郝雪雁,刘梦晓,韩紫依,房立霞,曹英秀. 大肠杆菌的耐酸机制及其改造研究进展. 微生物学通报. 2023(10): 4667-4680 .

    Other cited types(1)

Catalog

    Article views (393) PDF downloads (1298) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return