Citation: | QIAN Sijia, YIN Jun, YAO Wenbing, GAO Xiangdong. Research progress of breast cancer metabolic reprogramming and microenvironment remodeling[J]. Journal of China Pharmaceutical University, 2021, 52(2): 156-163. DOI: 10.11665/j.issn.1000-5048.20210203 |
[1] |
. JAMA, 2019, 321(3): 288-300.
|
[2] |
Jauhari Y, Gannon MR, Dodwell D, et al. Addressing frailty in patients with breast cancer: a review of the literature[J]. Eur J Surg Oncol, 2020, 46(1): 24-32.
|
[3] |
Thorat MA, Balasubramanian R. Breast cancer prevention in high-risk women[J]. Best Pract Res Clin Obstet Gynaecol, 2020, 65: 18-31.
|
[4] |
Nagarajan D, McArdle SEB. Immune landscape of breast cancers[J]. Biomedicines, 2018, 6(1): 20.
|
[5] |
Fouad YA, Aanei C. Revisiting the hallmarks of cancer[J]. Am J Cancer Res, 2017, 7(5): 1016-1036.
|
[6] |
Luengo A, Gui DY, Vander Heiden MG. Targeting metabolism for cancer therapy[J]. Cell Chem Biol, 2017, 24(9): 1161-1180.
|
[7] |
Chang H, Zhang Y, Ding X. Research progress on lipid metabolism in non-small cell lung cancer[J]. J China Pharm Univ(中国药科大学学报), 2020, 50(1): 107-113.
|
[8] |
Sun L, Suo C, Li ST, et al. Metabolic reprogramming for cancer cells and their microenvironment: beyond the Warburg effect[J]. Biochim Biophys Acta Rev Cancer, 2018, 1870(1): 51-66.
|
[9] |
Tayyari F, Gowda GAN, Olopade OF, et al. Metabolic profiles of triple-negative and luminal A breast cancer subtypes in African-American identify key metabolic differences[J]. Oncotarget, 2018, 9(14): 11677-11690.
|
[10] |
More TH, RoyChoudhury S, Christie J, et al. Metabolomic alterations in invasive ductal carcinoma of breast: a comprehensive metabolomic study using tissue and serum samples[J]. Oncotarget, 2017, 9(2): 2678-2696.
|
[11] |
Budczies J, Denkert C, Müller BM, et al. Remodeling of central metabolism in invasive breast cancer compared to normal breast tissue — a GC-TOFMS based metabolomics study[J]. BMC Genomics, 2012, 13: 334.
|
[12] |
Tang X, Lin CC, Spasojevic I, et al. A joint analysis of metabolomics and genetics of breast cancer[J]. Breast Cancer Res, 2014, 16(4): 415.
|
[13] |
Haukaas TH, Euceda LR, Giske?deg?rd GF, et al. Metabolic clusters of breast cancer in relation to gene-and protein expression subtypes[J]. Cancer Metab, 2016, 4: 12.
|
[14] |
Lane AN, Tan J, Wang Y, et al. Probing the metabolic phenotype of breast cancer cells by multiple tracer stable isotope resolved metabolomics[J]. Metab Eng, 2017, 43(pt b): 125-136.
|
[15] |
Dubuis S, Baenke F, Scherbichler N, et al. Metabotypes of breast cancer cell lines revealed by non-targeted metabolomics[J]. Metab Eng, 2017, 43(pt b): 173-186.
|
[16] |
Willmann L, Schlimpert M, Halbach S, et al. Metabolic profiling of breast cancer: differences in central metabolism between subtypes of breast cancer cell lines[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2015, 1000: 95-104.
|
[17] |
Liberti MV, Locasale JW. The Warburg effect: how does it benefit cancer cells [J] ? Trends Biochem Sci, 2016, 41(3): 211-218.
|
[18] |
Azad GK, Taylor BP, Green A, et al. Prediction of therapy response in bone-predominant metastatic breast cancer: comparison of [18F] fluorodeoxyglucose and [18F]-fluoride PET/CT with whole-body MRI with diffusion-weighted imaging[J]. Eur J Nucl Med Mol Imaging, 2019, 46(4): 821-830.
|
[19] |
Wang J, Ye C, Chen C, et al. Glucose transporter GLUT1 expression and clinical outcome in solid tumors: a systematic review and meta-analysis[J]. Oncotarget, 2017, 8(10): 16875-16886.
|
[20] |
Choi J, Jung WH, Koo JS. Metabolism-related proteins are differentially expressed according to the molecular subtype of invasive breast cancer defined by surrogate immunohistochemistry[J]. Pathobiology, 2013, 80(1): 41-52.
|
[21] |
Krzeslak A, Wojcik-Krowiranda K, Forma E, et al. Expression of GLUT1 and GLUT3 glucose transporters in endometrial and breast cancers[J]. Pathol Oncol Res, 2012, 18(3): 721-728.
|
[22] |
Garcia SN, Guedes RC, Marques MM. Unlocking the potential of HK2 in cancer metabolism and therapeutics[J]. Curr Med Chem, 2019, 26(41): 7285-7322.
|
[23] |
Brown RS, Goodman TM, Zasadny KR, et al. Expression of hexokinase II and glut-1 in untreated human breast cancer[J]. Nucl Med Biol, 2002, 29(4): 443-453.
|
[24] |
Patra KC, Wang Q, Bhaskar PT, et al. Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer[J]. Cancer Cell, 2013, 24(2): 213-228.
|
[25] |
Hennipman A, Smits J, van Oirschot B, et al. Glycolytic enzymes in breast cancer, benign breast disease and normal breast tissue[J]. Tumour Biol, 1987, 8(5): 251-263.
|
[26] |
Wang G, Xu Z, Wang C, et al. Differential phosphofructokinase-1 isoenzyme patterns associated with glycolytic efficiency in human breast cancer and paracancer tissues[J]. Oncol Lett, 2013, 6(6): 1701-1706.
|
[27] |
Dong G, Mao Q, Xia W, et al. PKM2 and cancer: the function of PKM2 beyond glycolysis[J]. Oncol Lett, 2016, 11(3): 1980-1986.
|
[28] |
Yang Y, Wu K, Liu Y, et al. Prognostic significance of metabolic enzyme pyruvate kinase M2 in breast cancer: a meta-analysis[J]. Medicine(Madr), 2017, 96(46):
|
[29] |
Mahdavi M, Nassiri M, Kooshyar MM, et al. Hereditary breast cancer; genetic penetrance and current status with BRCA[J]. J Cell Physiol, 2019, 234(5): 5741-5750.
|
[30] |
Vázquez-Arreguín K, Maddox J, Kang J, et al. BRCA1 through its E3 ligase activity regulates the transcription factor Oct1 and carbohydrate metabolism[J]. Mol Cancer Res, 2018, 16(3): 439-452.
|
[31] |
Zhao YH, Zhou M, Liu H, et al. Upregulation of lactate dehydrogenase A by ErbB2 through heat shock factor 1 promotes breast cancer cell glycolysis and growth[J]. Oncogene, 2009, 28(42): 3689-3701.
|
[32] |
Semenza GL. Hypoxia-inducible factors: coupling glucose metabolism and redox regulation with induction of the breast cancer stem cell phenotype[J]. EMBO J, 2017, 36(3): 252-259.
|
[33] |
Dupuy F, Tabariès S, Andrzejewski S, et al. PDK1-dependent metabolic reprogramming dictates metastatic potential in breast cancer[J]. Cell Metab, 2015, 22(4): 577-589.
|
[34] |
Chiavarina B, Martinez-Outschoorn UE, Whitaker-Menezes D, et al. Metabolic reprogramming and two-compartment tumor metabolism: opposing role(s) of HIF1α and HIF2α in tumor-associated fibroblasts and human breast cancer cells[J]. Cell Cycle, 2012, 11(17): 3280-3289.
|
[35] |
Yang L, Hou Y, Yuan J, et al. Twist promotes reprogramming of glucose metabolism in breast cancer cells through PI3K/AKT and p53 signaling pathways[J]. Oncotarget, 2015, 6(28): 25755-25769.
|
[36] |
Ahn CS, Metallo CM. Mitochondria as biosynthetic factories for cancer proliferation[J]. Cancer Metab, 2015, 3(1): 1.
|
[37] |
Kenny TC, Gomez ML, Germain D. Mitohormesis, UPRmt, and the complexity of mitochondrial DNA landscapes in cancer[J]. Cancer Res, 2019, 79(24): 6057-6066.
|
[38] |
Eastlack SC, Dong S, Ivan C, et al. Suppression of PDHX by microRNA-27b deregulates cell metabolism and promotes growth in breast cancer[J]. Mol Cancer, 2018, 17(1): 100.
|
[39] |
Hensley CT, Wasti AT, DeBerardinis RJ. Glutamine and cancer: cell biology, physiology, and clinical opportunities[J]. J Clin Invest, 2013, 123(9): 3678-3684.
|
[40] |
Kim S, Kim DH, Jung WH, et al. Expression of glutamine metabolism-related proteins according to molecular subtype of breast cancer[J]. Endocr Relat Cancer, 2013, 20(3): 339-348.
|
[41] |
Lampa M, Arlt H, He T, et al. Glutaminase is essential for the growth of triple-negative breast cancer cells with a deregulated glutamine metabolism pathway and its suppression synergizes with mTOR inhibition[J]. PLoS One, 2017, 12(9):
|
[42] |
Lukey MJ, Cluntun AA, Katt WP, et al. Liver-type glutaminase GLS2 is a druggable metabolic node in luminal-subtype breast cancer[J]. Cell Rep, 2019, 29(1): 76-88.e7.
|
[43] |
Mattaini KR, Sullivan MR, Vander Heiden MG. The importance of serine metabolism in cancer[J]. J Cell Biol, 2016, 214(3): 249-257.
|
[44] |
Murphy JP, Giacomantonio MA, Paulo JA, et al. The NAD+ salvage pathway supports PHGDH-driven serine biosynthesis[J]. Cell Rep, 2018, 24(9): 2381-2391.e5.
|
[45] |
Sullivan MR, Mattaini KR, Dennstedt EA, et al. Increased serine synthesis provides an advantage for tumors arising in tissues where serine levels are limiting[J]. Cell Metab, 2019, 29(6): 1410-1421.e4.
|
[46] |
Yang M, Vousden KH. Serine and one-carbon metabolism in cancer[J]. Nat Rev Cancer, 2016, 16(10): 650-662.
|
[47] |
Fan J, Teng X, Liu L, et al. Human phosphoglycerate dehydrogenase produces the oncometabolite D-2-hydroxyglutarate[J]. ACS Chem Biol, 2015, 10(2): 510-516.
|
[48] |
Beloribi-Djefaflia S, Vasseur S, Guillaumond F. Lipid metabolic reprogramming in cancer cells[J]. Oncogenesis, 2016, 5(1):
|
[49] |
Cheng C, Geng F, Cheng X, et al. Lipid metabolism reprogramming and its potential targets in cancer[J]. Cancer Commun(Lond), 2018, 38(1): 27.
|
[50] |
Kinlaw WB, Baures PW, Lupien LE, et al. Fatty acids and breast cancer: make them on site or have them delivered[J]. J Cell Physiol, 2016, 231(10): 2128-2141.
|
[51] |
Balaban S, Lee LS, Varney B, et al. Heterogeneity of fatty acid metabolism in breast cancer cells underlies differential sensitivity to palmitate-induced apoptosis[J]. Mol Oncol, 2018, 12(9): 1623-1638.
|
[52] |
Martinez-Outschoorn UE, Peiris-Pagés M, Pestell RG, et al. Cancer metabolism: a therapeutic perspective[J]. Nat Rev Clin Oncol, 2017, 14(1): 11-31.
|
[53] |
Schug ZT, Vande Voorde J, Gottlieb E. The metabolic fate of acetate in cancer[J]. Nat Rev Cancer, 2016, 16(11): 708-717.
|
[54] |
Schug ZT, Peck B, Jones DT, et al. Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress[J]. Cancer Cell, 2015, 27(1): 57-71.
|
[55] |
Gao X, Lin SH, Ren F, et al. Acetate functions as an epigenetic metabolite to promote lipid synthesis under hypoxia[J]. Nat Commun, 2016, 7: 11960.
|
[56] |
Sivanand S, Rhoades S, Jiang Q, et al. Nuclear acetyl-CoA production by ACLY promotes homologous recombination[J]. Mol Cell, 2017, 67(2): 252-265.e6.
|
[57] |
Menendez JA, Lupu R. Fatty acid synthase (FASN) as a therapeutic target in breast cancer[J]. Expert Opin Ther Targets, 2017, 21(11): 1001-1016.
|
[58] |
Ray A. Tumor-linked HER2 expression: association with obesity and lipid-related microenvironment[J]. Horm Mol Biol Clin Investig, 2017, 32(3):1-18.
|
[59] |
Jin Q, Yuan LX, Boulbes D, et al. Fatty acid synthase phosphorylation: a novel therapeutic target in HER2-overexpressing breast cancer cells[J]. Breast Cancer Res, 2010, 12(6):
|
[60] |
Pérez-Escuredo J, Dadhich RK, Dhup S, et al. Lactate promotes glutamine uptake and metabolism in oxidative cancer cells[J]. Cell Cycle, 2016, 15(1): 72-83.
|
[61] |
Végran F, Boidot R, Michiels C, et al. Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-κB/IL-8 pathway that drives tumor angiogenesis[J]. Cancer Res, 2011, 71(7): 2550-2560.
|
[62] |
Gonzalez H, Hagerling C, Werb Z. Roles of the immune system in cancer: from tumor initiation to metastatic progression[J]. Genes Dev, 2018, 32(19/20): 1267-1284.
|
[63] |
Bantug GR, Galluzzi L, Kroemer G, et al. The spectrum of T cell metabolism in health and disease[J]. Nat Rev Immunol, 2018, 18(1): 19-34.
|
[64] |
Ho PC, Bihuniak JD, Macintyre AN, et al. Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses[J]. Cell, 2015, 162(6): 1217-1228.
|
[65] |
Cui G, Staron MM, Gray SM, et al. IL-7-induced glycerol transport and TAG synthesis promotes memory CD8+ T cell longevity[J]. Cell, 2015, 161(4): 750-761.
|
[66] |
Sangsuwan R, Thuamsang B, Pacifici N, et al. Lactate exposure promotes immunosuppressive phenotypes in innate immune cells[J]. Cell Mol Bioeng, 2020, 13(5): 541-557.
|
[67] |
Bader JE, Voss K, Rathmell JC. Targeting metabolism to improve the tumor microenvironment for cancer immunotherapy[J]. Mol Cell, 2020, 78(6): 1019-1033.
|
[68] |
Taddei ML, Pietrovito L, Leo A, et al. Lactate in sarcoma microenvironment: much more than just a waste product[J]. Cells, 2020, 9(2): 510.
|
[69] |
Kim JY, Heo SH, Choi SK, et al. Glutaminase expression is a poor prognostic factor in node-positive triple-negative breast cancer patients with a high level of tumor-infiltrating lymphocytes[J]. Virchows Arch, 2017, 470(4): 381-389.
|
[70] |
Lecoutre S, Maqdasy S, Petrus P, et al. Glutamine metabolism in adipocytes: a bona fide epigenetic modulator of inflammation[J]. Adipocyte, 2020, 9(1): 620-625.
|
[71] |
Cook KL, Soto-Pantoja DR, Clarke PA, et al. Endoplasmic reticulum stress protein GRP78 modulates lipid metabolism to control drug sensitivity and antitumor immunity in breast cancer[J]. Cancer Res, 2016, 76(19): 5657-5670.
|
[1] | LIN Lin, QI Xiaodong, LI Yongsu, YANG Yubo, YANG Minghua, CHEN Yi, KONG Lingyi, WANG Li. Identification of involatile chemical components from Moutai-flavored distiller’s grains[J]. Journal of China Pharmaceutical University, 2023, 54(4): 461-467. DOI: 10.11665/j.issn.1000-5048.2023040402 |
[2] | ZHANG Jing, LI Lun, ZHANG Mei, HU Xiaolong, WANG Hao. Research progress in chemical constituent and pharmacological activity of Punica granatum L.[J]. Journal of China Pharmaceutical University, 2023, 54(4): 421-430. DOI: 10.11665/j.issn.1000-5048.2023032101 |
[3] | SUN Biao, AO Yunlin, WANG Dezhi, WANG Junya, YE Wencai, ZHANG Xiaoqi. Chemical constituents of petroleum ether extract from the stems and leaves of Humulus scandens[J]. Journal of China Pharmaceutical University, 2022, 53(2): 178-184. DOI: 10.11665/j.issn.1000-5048.20220207 |
[4] | YANG Xiaojun, AI Fengfeng, LIN Junbing, TANG Jiangjiang. Chemical constituents extracted from Dictamnus dasycarpus and their α-glucosidase inhibitory activity[J]. Journal of China Pharmaceutical University, 2019, 50(1): 41-45. DOI: 10.11665/j.issn.1000-5048.20190105 |
[5] | Pham Thi Anh, LI Junyan, ZHANG Baobao, WANG Hao. Chemical constituents from the n-butanol portions of the fruits of Eucalyptus globulus[J]. Journal of China Pharmaceutical University, 2018, 49(4): 422-426. DOI: 10.11665/j.issn.1000-5048.20180406 |
[6] | MA Lin, ZHANG Yaozhou, DANG Jun. Chemical constituents from water extract of Armillaria luteo-virens[J]. Journal of China Pharmaceutical University, 2016, 47(3): 291-293. DOI: 10.11665/j.issn.1000-5048.20160307 |
[7] | YIN Minmin, YIN Zhiqi, ZHANG Jian, WANG Lei, YE Wencai. Chemical constituents from ethyl acetate extract of Cynanchum otophyllum Schneid.[J]. Journal of China Pharmaceutical University, 2013, 44(3): 213-218. DOI: 10.11665/j.issn.1000-5048.20130305 |
[8] | SUN Jing, YIN Zhi-qi, ZHANG Qing-wen, YE Wen-cai, WANG Yi-ta, ZHAO Shou-xun. Chemical constituents from ethyl acetate extract of Ganoderma lucidum[J]. Journal of China Pharmaceutical University, 2011, 42(3): 220-222. |
[9] | Chemical constituents from n-butanol extract of the stems of Lonicera japonica[J]. Journal of China Pharmaceutical University, 2010, 41(4): 333-336. |
[10] | Hypoglycemic Effects of Extracts and Constituents from Euonymus alatus[J]. Journal of China Pharmaceutical University, 2003, (2): 32-35. |