• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
QIAN Sijia, YIN Jun, YAO Wenbing, GAO Xiangdong. Research progress of breast cancer metabolic reprogramming and microenvironment remodeling[J]. Journal of China Pharmaceutical University, 2021, 52(2): 156-163. DOI: 10.11665/j.issn.1000-5048.20210203
Citation: QIAN Sijia, YIN Jun, YAO Wenbing, GAO Xiangdong. Research progress of breast cancer metabolic reprogramming and microenvironment remodeling[J]. Journal of China Pharmaceutical University, 2021, 52(2): 156-163. DOI: 10.11665/j.issn.1000-5048.20210203

Research progress of breast cancer metabolic reprogramming and microenvironment remodeling

Funds: This study was supported by the Innovation Team of the "Double-First Class" Disciplines of China Pharmaceutical University (No.CPU2018GF08)
More Information
  • Received Date: December 18, 2020
  • Revised Date: January 17, 2021
  • As numerous connections between oncogenic signalling pathways and metabolic activities emerge, the importance of metabolic reprogramming in cancer is being increasingly recognized. During tumorigenesis, breast cancer cells undergo metabolic reprogramming, which generally includes enhanced glycolysis, tricarboxylic acid cycle activity, glutaminolysis and fatty acid biosynthesis. The extension and functional importance of these metabolic alterations may diverge according to breast cancer subtypes.Besides, aberrant metabolism of breast cancer cells remodels tumor microenvironment, promoting cancer vascularization and inhibiting anti-tumor immunity, and thus accelerates tumor progression.This review addresses current knowledge on the metabolic reprogramming and breast cancer microenvironment, which provides some reference for the development of metabolic target drugs for each breast cancer subtype.
  • [1]
    . JAMA, 2019, 321(3): 288-300.
    [2]
    Jauhari Y, Gannon MR, Dodwell D, et al. Addressing frailty in patients with breast cancer: a review of the literature[J]. Eur J Surg Oncol, 2020, 46(1): 24-32.
    [3]
    Thorat MA, Balasubramanian R. Breast cancer prevention in high-risk women[J]. Best Pract Res Clin Obstet Gynaecol, 2020, 65: 18-31.
    [4]
    Nagarajan D, McArdle SEB. Immune landscape of breast cancers[J]. Biomedicines, 2018, 6(1): 20.
    [5]
    Fouad YA, Aanei C. Revisiting the hallmarks of cancer[J]. Am J Cancer Res, 2017, 7(5): 1016-1036.
    [6]
    Luengo A, Gui DY, Vander Heiden MG. Targeting metabolism for cancer therapy[J]. Cell Chem Biol, 2017, 24(9): 1161-1180.
    [7]
    Chang H, Zhang Y, Ding X. Research progress on lipid metabolism in non-small cell lung cancer[J]. J China Pharm Univ(中国药科大学学报), 2020, 50(1): 107-113.
    [8]
    Sun L, Suo C, Li ST, et al. Metabolic reprogramming for cancer cells and their microenvironment: beyond the Warburg effect[J]. Biochim Biophys Acta Rev Cancer, 2018, 1870(1): 51-66.
    [9]
    Tayyari F, Gowda GAN, Olopade OF, et al. Metabolic profiles of triple-negative and luminal A breast cancer subtypes in African-American identify key metabolic differences[J]. Oncotarget, 2018, 9(14): 11677-11690.
    [10]
    More TH, RoyChoudhury S, Christie J, et al. Metabolomic alterations in invasive ductal carcinoma of breast: a comprehensive metabolomic study using tissue and serum samples[J]. Oncotarget, 2017, 9(2): 2678-2696.
    [11]
    Budczies J, Denkert C, Müller BM, et al. Remodeling of central metabolism in invasive breast cancer compared to normal breast tissue — a GC-TOFMS based metabolomics study[J]. BMC Genomics, 2012, 13: 334.
    [12]
    Tang X, Lin CC, Spasojevic I, et al. A joint analysis of metabolomics and genetics of breast cancer[J]. Breast Cancer Res, 2014, 16(4): 415.
    [13]
    Haukaas TH, Euceda LR, Giske?deg?rd GF, et al. Metabolic clusters of breast cancer in relation to gene-and protein expression subtypes[J]. Cancer Metab, 2016, 4: 12.
    [14]
    Lane AN, Tan J, Wang Y, et al. Probing the metabolic phenotype of breast cancer cells by multiple tracer stable isotope resolved metabolomics[J]. Metab Eng, 2017, 43(pt b): 125-136.
    [15]
    Dubuis S, Baenke F, Scherbichler N, et al. Metabotypes of breast cancer cell lines revealed by non-targeted metabolomics[J]. Metab Eng, 2017, 43(pt b): 173-186.
    [16]
    Willmann L, Schlimpert M, Halbach S, et al. Metabolic profiling of breast cancer: differences in central metabolism between subtypes of breast cancer cell lines[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2015, 1000: 95-104.
    [17]
    Liberti MV, Locasale JW. The Warburg effect: how does it benefit cancer cells [J] ? Trends Biochem Sci, 2016, 41(3): 211-218.
    [18]
    Azad GK, Taylor BP, Green A, et al. Prediction of therapy response in bone-predominant metastatic breast cancer: comparison of [18F] fluorodeoxyglucose and [18F]-fluoride PET/CT with whole-body MRI with diffusion-weighted imaging[J]. Eur J Nucl Med Mol Imaging, 2019, 46(4): 821-830.
    [19]
    Wang J, Ye C, Chen C, et al. Glucose transporter GLUT1 expression and clinical outcome in solid tumors: a systematic review and meta-analysis[J]. Oncotarget, 2017, 8(10): 16875-16886.
    [20]
    Choi J, Jung WH, Koo JS. Metabolism-related proteins are differentially expressed according to the molecular subtype of invasive breast cancer defined by surrogate immunohistochemistry[J]. Pathobiology, 2013, 80(1): 41-52.
    [21]
    Krzeslak A, Wojcik-Krowiranda K, Forma E, et al. Expression of GLUT1 and GLUT3 glucose transporters in endometrial and breast cancers[J]. Pathol Oncol Res, 2012, 18(3): 721-728.
    [22]
    Garcia SN, Guedes RC, Marques MM. Unlocking the potential of HK2 in cancer metabolism and therapeutics[J]. Curr Med Chem, 2019, 26(41): 7285-7322.
    [23]
    Brown RS, Goodman TM, Zasadny KR, et al. Expression of hexokinase II and glut-1 in untreated human breast cancer[J]. Nucl Med Biol, 2002, 29(4): 443-453.
    [24]
    Patra KC, Wang Q, Bhaskar PT, et al. Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer[J]. Cancer Cell, 2013, 24(2): 213-228.
    [25]
    Hennipman A, Smits J, van Oirschot B, et al. Glycolytic enzymes in breast cancer, benign breast disease and normal breast tissue[J]. Tumour Biol, 1987, 8(5): 251-263.
    [26]
    Wang G, Xu Z, Wang C, et al. Differential phosphofructokinase-1 isoenzyme patterns associated with glycolytic efficiency in human breast cancer and paracancer tissues[J]. Oncol Lett, 2013, 6(6): 1701-1706.
    [27]
    Dong G, Mao Q, Xia W, et al. PKM2 and cancer: the function of PKM2 beyond glycolysis[J]. Oncol Lett, 2016, 11(3): 1980-1986.
    [28]
    Yang Y, Wu K, Liu Y, et al. Prognostic significance of metabolic enzyme pyruvate kinase M2 in breast cancer: a meta-analysis[J]. Medicine(Madr), 2017, 96(46): e8690.
    [29]
    Mahdavi M, Nassiri M, Kooshyar MM, et al. Hereditary breast cancer; genetic penetrance and current status with BRCA[J]. J Cell Physiol, 2019, 234(5): 5741-5750.
    [30]
    Vázquez-Arreguín K, Maddox J, Kang J, et al. BRCA1 through its E3 ligase activity regulates the transcription factor Oct1 and carbohydrate metabolism[J]. Mol Cancer Res, 2018, 16(3): 439-452.
    [31]
    Zhao YH, Zhou M, Liu H, et al. Upregulation of lactate dehydrogenase A by ErbB2 through heat shock factor 1 promotes breast cancer cell glycolysis and growth[J]. Oncogene, 2009, 28(42): 3689-3701.
    [32]
    Semenza GL. Hypoxia-inducible factors: coupling glucose metabolism and redox regulation with induction of the breast cancer stem cell phenotype[J]. EMBO J, 2017, 36(3): 252-259.
    [33]
    Dupuy F, Tabariès S, Andrzejewski S, et al. PDK1-dependent metabolic reprogramming dictates metastatic potential in breast cancer[J]. Cell Metab, 2015, 22(4): 577-589.
    [34]
    Chiavarina B, Martinez-Outschoorn UE, Whitaker-Menezes D, et al. Metabolic reprogramming and two-compartment tumor metabolism: opposing role(s) of HIF1α and HIF2α in tumor-associated fibroblasts and human breast cancer cells[J]. Cell Cycle, 2012, 11(17): 3280-3289.
    [35]
    Yang L, Hou Y, Yuan J, et al. Twist promotes reprogramming of glucose metabolism in breast cancer cells through PI3K/AKT and p53 signaling pathways[J]. Oncotarget, 2015, 6(28): 25755-25769.
    [36]
    Ahn CS, Metallo CM. Mitochondria as biosynthetic factories for cancer proliferation[J]. Cancer Metab, 2015, 3(1): 1.
    [37]
    Kenny TC, Gomez ML, Germain D. Mitohormesis, UPRmt, and the complexity of mitochondrial DNA landscapes in cancer[J]. Cancer Res, 2019, 79(24): 6057-6066.
    [38]
    Eastlack SC, Dong S, Ivan C, et al. Suppression of PDHX by microRNA-27b deregulates cell metabolism and promotes growth in breast cancer[J]. Mol Cancer, 2018, 17(1): 100.
    [39]
    Hensley CT, Wasti AT, DeBerardinis RJ. Glutamine and cancer: cell biology, physiology, and clinical opportunities[J]. J Clin Invest, 2013, 123(9): 3678-3684.
    [40]
    Kim S, Kim DH, Jung WH, et al. Expression of glutamine metabolism-related proteins according to molecular subtype of breast cancer[J]. Endocr Relat Cancer, 2013, 20(3): 339-348.
    [41]
    Lampa M, Arlt H, He T, et al. Glutaminase is essential for the growth of triple-negative breast cancer cells with a deregulated glutamine metabolism pathway and its suppression synergizes with mTOR inhibition[J]. PLoS One, 2017, 12(9): e0185092.
    [42]
    Lukey MJ, Cluntun AA, Katt WP, et al. Liver-type glutaminase GLS2 is a druggable metabolic node in luminal-subtype breast cancer[J]. Cell Rep, 2019, 29(1): 76-88.e7.
    [43]
    Mattaini KR, Sullivan MR, Vander Heiden MG. The importance of serine metabolism in cancer[J]. J Cell Biol, 2016, 214(3): 249-257.
    [44]
    Murphy JP, Giacomantonio MA, Paulo JA, et al. The NAD+ salvage pathway supports PHGDH-driven serine biosynthesis[J]. Cell Rep, 2018, 24(9): 2381-2391.e5.
    [45]
    Sullivan MR, Mattaini KR, Dennstedt EA, et al. Increased serine synthesis provides an advantage for tumors arising in tissues where serine levels are limiting[J]. Cell Metab, 2019, 29(6): 1410-1421.e4.
    [46]
    Yang M, Vousden KH. Serine and one-carbon metabolism in cancer[J]. Nat Rev Cancer, 2016, 16(10): 650-662.
    [47]
    Fan J, Teng X, Liu L, et al. Human phosphoglycerate dehydrogenase produces the oncometabolite D-2-hydroxyglutarate[J]. ACS Chem Biol, 2015, 10(2): 510-516.
    [48]
    Beloribi-Djefaflia S, Vasseur S, Guillaumond F. Lipid metabolic reprogramming in cancer cells[J]. Oncogenesis, 2016, 5(1): e189.
    [49]
    Cheng C, Geng F, Cheng X, et al. Lipid metabolism reprogramming and its potential targets in cancer[J]. Cancer Commun(Lond), 2018, 38(1): 27.
    [50]
    Kinlaw WB, Baures PW, Lupien LE, et al. Fatty acids and breast cancer: make them on site or have them delivered[J]. J Cell Physiol, 2016, 231(10): 2128-2141.
    [51]
    Balaban S, Lee LS, Varney B, et al. Heterogeneity of fatty acid metabolism in breast cancer cells underlies differential sensitivity to palmitate-induced apoptosis[J]. Mol Oncol, 2018, 12(9): 1623-1638.
    [52]
    Martinez-Outschoorn UE, Peiris-Pagés M, Pestell RG, et al. Cancer metabolism: a therapeutic perspective[J]. Nat Rev Clin Oncol, 2017, 14(1): 11-31.
    [53]
    Schug ZT, Vande Voorde J, Gottlieb E. The metabolic fate of acetate in cancer[J]. Nat Rev Cancer, 2016, 16(11): 708-717.
    [54]
    Schug ZT, Peck B, Jones DT, et al. Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress[J]. Cancer Cell, 2015, 27(1): 57-71.
    [55]
    Gao X, Lin SH, Ren F, et al. Acetate functions as an epigenetic metabolite to promote lipid synthesis under hypoxia[J]. Nat Commun, 2016, 7: 11960.
    [56]
    Sivanand S, Rhoades S, Jiang Q, et al. Nuclear acetyl-CoA production by ACLY promotes homologous recombination[J]. Mol Cell, 2017, 67(2): 252-265.e6.
    [57]
    Menendez JA, Lupu R. Fatty acid synthase (FASN) as a therapeutic target in breast cancer[J]. Expert Opin Ther Targets, 2017, 21(11): 1001-1016.
    [58]
    Ray A. Tumor-linked HER2 expression: association with obesity and lipid-related microenvironment[J]. Horm Mol Biol Clin Investig, 2017, 32(3):1-18.
    [59]
    Jin Q, Yuan LX, Boulbes D, et al. Fatty acid synthase phosphorylation: a novel therapeutic target in HER2-overexpressing breast cancer cells[J]. Breast Cancer Res, 2010, 12(6): R96.
    [60]
    Pérez-Escuredo J, Dadhich RK, Dhup S, et al. Lactate promotes glutamine uptake and metabolism in oxidative cancer cells[J]. Cell Cycle, 2016, 15(1): 72-83.
    [61]
    Végran F, Boidot R, Michiels C, et al. Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-κB/IL-8 pathway that drives tumor angiogenesis[J]. Cancer Res, 2011, 71(7): 2550-2560.
    [62]
    Gonzalez H, Hagerling C, Werb Z. Roles of the immune system in cancer: from tumor initiation to metastatic progression[J]. Genes Dev, 2018, 32(19/20): 1267-1284.
    [63]
    Bantug GR, Galluzzi L, Kroemer G, et al. The spectrum of T cell metabolism in health and disease[J]. Nat Rev Immunol, 2018, 18(1): 19-34.
    [64]
    Ho PC, Bihuniak JD, Macintyre AN, et al. Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses[J]. Cell, 2015, 162(6): 1217-1228.
    [65]
    Cui G, Staron MM, Gray SM, et al. IL-7-induced glycerol transport and TAG synthesis promotes memory CD8+ T cell longevity[J]. Cell, 2015, 161(4): 750-761.
    [66]
    Sangsuwan R, Thuamsang B, Pacifici N, et al. Lactate exposure promotes immunosuppressive phenotypes in innate immune cells[J]. Cell Mol Bioeng, 2020, 13(5): 541-557.
    [67]
    Bader JE, Voss K, Rathmell JC. Targeting metabolism to improve the tumor microenvironment for cancer immunotherapy[J]. Mol Cell, 2020, 78(6): 1019-1033.
    [68]
    Taddei ML, Pietrovito L, Leo A, et al. Lactate in sarcoma microenvironment: much more than just a waste product[J]. Cells, 2020, 9(2): 510.
    [69]
    Kim JY, Heo SH, Choi SK, et al. Glutaminase expression is a poor prognostic factor in node-positive triple-negative breast cancer patients with a high level of tumor-infiltrating lymphocytes[J]. Virchows Arch, 2017, 470(4): 381-389.
    [70]
    Lecoutre S, Maqdasy S, Petrus P, et al. Glutamine metabolism in adipocytes: a bona fide epigenetic modulator of inflammation[J]. Adipocyte, 2020, 9(1): 620-625.
    [71]
    Cook KL, Soto-Pantoja DR, Clarke PA, et al. Endoplasmic reticulum stress protein GRP78 modulates lipid metabolism to control drug sensitivity and antitumor immunity in breast cancer[J]. Cancer Res, 2016, 76(19): 5657-5670.
  • Related Articles

    [1]LIN Lin, QI Xiaodong, LI Yongsu, YANG Yubo, YANG Minghua, CHEN Yi, KONG Lingyi, WANG Li. Identification of involatile chemical components from Moutai-flavored distiller’s grains[J]. Journal of China Pharmaceutical University, 2023, 54(4): 461-467. DOI: 10.11665/j.issn.1000-5048.2023040402
    [2]ZHANG Jing, LI Lun, ZHANG Mei, HU Xiaolong, WANG Hao. Research progress in chemical constituent and pharmacological activity of Punica granatum L.[J]. Journal of China Pharmaceutical University, 2023, 54(4): 421-430. DOI: 10.11665/j.issn.1000-5048.2023032101
    [3]SUN Biao, AO Yunlin, WANG Dezhi, WANG Junya, YE Wencai, ZHANG Xiaoqi. Chemical constituents of petroleum ether extract from the stems and leaves of Humulus scandens[J]. Journal of China Pharmaceutical University, 2022, 53(2): 178-184. DOI: 10.11665/j.issn.1000-5048.20220207
    [4]YANG Xiaojun, AI Fengfeng, LIN Junbing, TANG Jiangjiang. Chemical constituents extracted from Dictamnus dasycarpus and their α-glucosidase inhibitory activity[J]. Journal of China Pharmaceutical University, 2019, 50(1): 41-45. DOI: 10.11665/j.issn.1000-5048.20190105
    [5]Pham Thi Anh, LI Junyan, ZHANG Baobao, WANG Hao. Chemical constituents from the n-butanol portions of the fruits of Eucalyptus globulus[J]. Journal of China Pharmaceutical University, 2018, 49(4): 422-426. DOI: 10.11665/j.issn.1000-5048.20180406
    [6]MA Lin, ZHANG Yaozhou, DANG Jun. Chemical constituents from water extract of Armillaria luteo-virens[J]. Journal of China Pharmaceutical University, 2016, 47(3): 291-293. DOI: 10.11665/j.issn.1000-5048.20160307
    [7]YIN Minmin, YIN Zhiqi, ZHANG Jian, WANG Lei, YE Wencai. Chemical constituents from ethyl acetate extract of Cynanchum otophyllum Schneid.[J]. Journal of China Pharmaceutical University, 2013, 44(3): 213-218. DOI: 10.11665/j.issn.1000-5048.20130305
    [8]SUN Jing, YIN Zhi-qi, ZHANG Qing-wen, YE Wen-cai, WANG Yi-ta, ZHAO Shou-xun. Chemical constituents from ethyl acetate extract of Ganoderma lucidum[J]. Journal of China Pharmaceutical University, 2011, 42(3): 220-222.
    [9]Chemical constituents from n-butanol extract of the stems of Lonicera japonica[J]. Journal of China Pharmaceutical University, 2010, 41(4): 333-336.
    [10]Hypoglycemic Effects of Extracts and Constituents from Euonymus alatus[J]. Journal of China Pharmaceutical University, 2003, (2): 32-35.
  • Cited by

    Periodical cited type(3)

    1. 胡彤,李爽,钟卫鸿. 基于酸信号转导系统的细菌耐酸机制及其应用. 生物工程学报. 2024(03): 644-664 .
    2. 吴晓妍,吴剑梅,傅丹丹,涂健,宋祥军,邵颖,祁克宗. hipA对禽致病性大肠杆菌生物学特性和致病性的影响. 西北农林科技大学学报(自然科学版). 2023(08): 11-18+28 .
    3. 郝雪雁,刘梦晓,韩紫依,房立霞,曹英秀. 大肠杆菌的耐酸机制及其改造研究进展. 微生物学通报. 2023(10): 4667-4680 .

    Other cited types(1)

Catalog

    Article views (480) PDF downloads (1090) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return