Citation: | SU Boya, XU Yuansheng, WANG Hua, TANG Yuqing, ZHANG Shiqun, SONG Yan. Progress of research on disease-modifying osteoarthritis drugs[J]. Journal of China Pharmaceutical University, 2021, 52(2): 253-260. DOI: 10.11665/j.issn.1000-5048.20210215 |
[1] |
. Chin J Orthop(中华骨科杂志),2018,38(12):705–715.
|
[2] |
European Medicines Agency. Guideline on clinical investigation of medicinal products used in the treatment of osteoarthritis[R]. London:European Medicines Agency,2010.
|
[3] |
Food and Drug Administration. Osteoarthritis:structural endpoints for the development of drugs,devices,and biological products for treatment guidance for industry[R]. Rockville:U. S. Department of Health and Human Services, 2018.
|
[4] |
Guilak F. Biomechanical factors in osteoarthritis[J]. Best Pract Res Clin Rheumatol, 2011, 25(6): 815-823.
|
[5] |
Jotanovic Z, Mihelic R, Sestan B, et al. Emerging pathways and promising agents with possible disease modifying effect in osteoarthritis treatment[J]. Curr Drug Targets, 2014, 15(6): 635-661.
|
[6] |
Deveza LA, Nelson AE, Loeser RF. Phenotypes of osteoarthritis: current state and future implications[J]. Clin Exp Rheumatol, 2019, 37(5): 64-72.
|
[7] |
Karsdal MA, Bay-Jensen AC, Lories RJ, et al. The coupling of bone and cartilage turnover in osteoarthritis: opportunities for bone antiresorptives and anabolics as potential treatments[J]? Ann Rheum Dis, 2014, 73(2): 336-348.
|
[8] |
Berenbaum F. Osteoarthritis as an inflammatory disease (osteoarthritis is not osteoarthrosis!)[J]. Osteoarthr Cartil, 2013, 21(1): 16-21.
|
[9] |
Oo WM, Yu SP, Daniel MS, et al. Disease-modifying drugs in osteoarthritis: current understanding and future therapeutics[J]. Expert Opin Emerg Drugs, 2018, 23(4): 331-347.
|
[10] |
Muchedzi TA, Roberts SB. A systematic review of the effects of platelet rich plasma on outcomes for patients with knee osteoarthritis and following total knee arthroplasty[J]. Surgeon, 2018, 16(4): 250-258.
|
[11] |
Eckstein F, Wirth W, Guermazi A, et al. Brief report: intraarticular sprifermin not only increases cartilage thickness, but also reduces cartilage loss: location-independent post hoc analysis using magnetic resonance imaging[J]. Arthritis Rheumatol, 2015, 67(11): 2916-2922.
|
[12] |
Hochberg MC, Guermazi A, Guehring H, et al. Effect of intra-articular sprifermin vs placebo on femorotibial joint cartilage thickness in patients with osteoarthritis: the FORWARD randomized clinical trial[J]. JAMA, 2019, 322(14): 1360-1370.
|
[13] |
Chubinskaya S, Hurtig M, Rueger DC. OP-1/BMP-7 in cartilage repair[J]. Int Orthop, 2007, 31(6): 773-781.
|
[14] |
Hunter DJ, Pike MC, Jonas BL, et al. Phase 1 safety and tolerability study of BMP-7 in symptomatic knee osteoarthritis[J]. BMC Musculoskelet Disord, 2010, 11: 232.
|
[15] |
Dhillon RS, Schwarz EM, Maloney MD. Platelet-rich plasma therapy — future or trend[J]? Arthritis Res Ther, 2012, 14(4): 219.
|
[16] |
Jevotovsky DS, Alfonso AR, Einhorn TA, et al. Osteoarthritis and stem cell therapy in humans: a systematic review[J]. Osteoarthritis Cartilage, 2018, 26(6): 711-729.
|
[17] |
Lee WY, Wang B. Cartilage repair by mesenchymal stem cells: clinical trial update and perspectives[J]. J Orthop Translat, 2017, 9: 76-88.
|
[18] |
Burrage PS, Mix KS, Brinckerhoff CE. Matrix metalloproteinases: role in arthritis[J]. Front Biosci, 2006, 11: 529-543.
|
[19] |
Verma P, Dalal K. ADAMTS-4 and ADAMTS-5: key enzymes in osteoarthritis[J]. J Cell Biochem, 2011, 112(12): 3507-3514.
|
[20] |
Wu LH, Huang XH, Li LF, et al. Insights on biology and pathology of HIF-1α/-2α, TGFβ/BMP, Wnt/β-catenin, and NF-κB pathways in osteoarthritis[J]. Curr Pharm Des, 2012, 18(22): 3293-3312.
|
[21] |
Tonge DP, Pearson MJ, Jones SW. The hallmarks of osteoarthritis and the potential to develop personalised disease-modifying pharmacological therapeutics[J]. Osteoarthritis Cartilage, 2014, 22(5): 609-621.
|
[22] |
Wang MN, Sampson ER, Jin HT, et al. MMP13 is a critical target gene during the progression of osteoarthritis[J]. Arthritis Res Ther, 2013, 15(1):
|
[23] |
Ge XP, Ma XC, Meng JH, et al. Role of Wnt-5A in interleukin-1beta-induced matrix metalloproteinase expression in rabbit temporomandibular joint condylar chondrocytes[J]. Arthritis Rheum, 2009, 60(9): 2714-2722.
|
[24] |
Yazici Y, McAlindon TE, Gibofsky A, et al. Results from a 52-week randomized, double-blind, placebo-controlled, phase 2 study of a novel, intra-articular wnt pathway inhibitor (SM04690) for the treatment of knee osteoarthritis[J]. Osteoarthr Cartil, 2018, 26: S293-S294.
|
[25] |
Malekipour F, Whitton C, Oetomo D, et al. Shock absorbing ability of articular cartilage and subchondral bone under impact compression[J]. J Mech Behav Biomed Mater, 2013, 26: 127-135.
|
[26] |
Li GY, Yin JM, Gao JJ, et al. Subchondral bone in osteoarthritis: insight into risk factors and microstructural changes[J]. Arthritis Res Ther, 2013, 15(6): 223.
|
[27] |
Burr DB, Gallant MA. Bone remodelling in osteoarthritis[J]. Nat Rev Rheumatol, 2012, 8(11): 665-673.
|
[28] |
Alliston T, Hernandez CJ, Findlay DM, et al. Bone marrow lesions in osteoarthritis: What lies beneath[J]. J Orthop Res, 2018, 36(7): 1818-1825.
|
[29] |
van Spil WE, Kubassova O, Boesen M, et al. Osteoarthritis phenotypes and novel therapeutic targets[J]. Biochem Pharmacol, 2019, 165: 41-48.
|
[30] |
Vaysbrot EE, Osani MC, Musetti MC, et al. Are bisphosphonates efficacious in knee osteoarthritis?A meta-analysis of randomized controlled trials[J]. Osteoarthritis Cartilage, 2018, 26(2): 154-164.
|
[31] |
Deveza LA, Bierma-Zeinstra SMA, van Spil WE, et al. Efficacy of bisphosphonates in specific knee osteoarthritis subpopulations: protocol for an OA Trial Bank systematic review and individual patient data meta-analysis[J]. BMJ Open, 2018, 8(12):
|
[32] |
Sondergaard BC, Madsen SH, Segovia-Silvestre T, et al. Investigation of the direct effects of salmon calcitonin on human osteoarthritic chondrocytes[J]. BMC Musculoskelet Disord, 2010, 11: 62.
|
[33] |
Chen CH, Ho ML, Chang LH, et al. Parathyroid hormone-( 1-34) ameliorated knee osteoarthritis in rats via autophagy[J]. J Appl Physiol (1985), 2018, 124(5): 1177-1185.
|
[34] |
Lindstr?m E, Rizoska B, Tunblad K, et al. The selective cathepsin K inhibitor MIV-711 attenuates joint pathology in experimental animal models of osteoarthritis[J]. J Transl Med, 2018, 16(1): 56.
|
[35] |
Karsdal MA, Michaelis M, Ladel C, et al. Disease-modifying treatments for osteoarthritis (DMOADs) of the knee and hip: lessons learned from failures and opportunities for the future[J]. Osteoarthritis Cartilage, 2016, 24(12): 2013-2021.
|
[36] |
Conaghan PG, Bowes MA, Kingsbury SR, et al. Disease-modifying effects of a novel cathepsin K inhibitor in osteoarthritis: a randomized controlled trial[J]. Ann Intern Med, 2020, 172(2): 86-95.
|
[37] |
Mathiessen A, Conaghan PG. Synovitis in osteoarthritis: current understanding with therapeutic implications[J]. Arthritis Res Ther, 2017, 19(1): 18.
|
[38] |
Pelletier JP, Martel-Pelletier J, Rannou F, et al. Efficacy and safety of oral NSAIDs and analgesics in the management of osteoarthritis: evidence from real-life setting trials and surveys[J]. Semin Arthritis Rheum, 2016, 45(4
|
[39] |
Savvidou O, Milonaki M, Goumenos S, et al. Glucocorticoid signaling and osteoarthritis[J]. Mol Cell Endocrinol, 2019, 480: 153-166.
|
[40] |
Cohen SB, Proudman S, Kivitz AJ, et al. A randomized, double-blind study of AMG 108 (a fully human monoclonal antibody to IL-1R1) in patients with osteoarthritis of the knee[J]. Arthritis Res Ther, 2011, 13(4):
|
[41] |
Wang SX, Abramson SB, Attur M, et al. Safety, tolerability, and pharmacodynamics of an anti-interleukin-1α/β dual variable domain immunoglobulin in patients with osteoarthritis of the knee: a randomized phase 1 study[J]. Osteoarthritis Cartilage, 2017, 25(12): 1952-1961.
|
[42] |
Fleischmann RM, Bliddal H, Blanco FJ, et al. A phase II trial of lutikizumab, an anti-interleukin-1α/β dual variable domain immunoglobulin, in knee osteoarthritis patients with synovitis[J]. Arthritis Rheumatol, 2019, 71(7): 1056-1069.
|
[43] |
Verbruggen G, Wittoek R, Vander Cruyssen B, et al. Tumour necrosis factor blockade for the treatment of erosive osteoarthritis of the interphalangeal finger joints: a double blind, randomised trial on structure modification[J]. Ann Rheum Dis, 2012, 71(6): 891-898.
|
[44] |
Magnano MD, Chakravarty EF, Broudy C, et al. A pilot study of tumor necrosis factor inhibition in erosive/inflammatory osteoarthritis of the hands[J]. J Rheumatol, 2007, 34(6): 1323-1327.
|
[45] |
Chevalier X, Ravaud P, Maheu E, et al. Adalimumab in patients with hand osteoarthritis refractory to analgesics and NSAIDs: a randomised, multicentre, double-blind, placebo-controlled trial[J]. Ann Rheum Dis, 2015, 74(9): 1697-1705.
|
[46] |
Fioravanti A, Fabbroni M, Cerase A, et al. Treatment of erosive osteoarthritis of the hands by intra-articular infliximab injections: a pilot study[J]. Rheumatol Int, 2009, 29(8): 961-965.
|
[47] |
Kawasaki T, Kawai T. Toll-like receptor signaling pathways[J]. Front Immunol, 2014, 5: 461.
|
[48] |
Maudens P, Seemayer CA, Pfefferlé F, et al. Nanocrystals of a potent p38 MAPK inhibitor embedded in microparticles: Therapeutic effects in inflammatory and mechanistic murine models of osteoarthritis[J]. J Control Release, 2018, 276: 102-112.
|
[49] |
Grothe K, Flechsenhar K, Paehler T, et al. IκB kinase inhibition as a potential treatment of osteoarthritis — results of a clinical proof-of-concept study[J]. Osteoarthritis Cartilage, 2017, 25(1): 46-52.
|
[50] |
Hellio le Graverand MP, Clemmer RS, Redifer P, et al. A 2-year randomised, double-blind, placebo-controlled, multicentre study of oral selective iNOS inhibitor, cindunistat (SD-6010), in patients with symptomatic osteoarthritis of the knee[J]. Ann Rheum Dis, 2013, 72(2): 187-195.
|
[1] | LIN Lin, QI Xiaodong, LI Yongsu, YANG Yubo, YANG Minghua, CHEN Yi, KONG Lingyi, WANG Li. Identification of involatile chemical components from Moutai-flavored distiller’s grains[J]. Journal of China Pharmaceutical University, 2023, 54(4): 461-467. DOI: 10.11665/j.issn.1000-5048.2023040402 |
[2] | ZHANG Jing, LI Lun, ZHANG Mei, HU Xiaolong, WANG Hao. Research progress in chemical constituent and pharmacological activity of Punica granatum L.[J]. Journal of China Pharmaceutical University, 2023, 54(4): 421-430. DOI: 10.11665/j.issn.1000-5048.2023032101 |
[3] | SUN Biao, AO Yunlin, WANG Dezhi, WANG Junya, YE Wencai, ZHANG Xiaoqi. Chemical constituents of petroleum ether extract from the stems and leaves of Humulus scandens[J]. Journal of China Pharmaceutical University, 2022, 53(2): 178-184. DOI: 10.11665/j.issn.1000-5048.20220207 |
[4] | YANG Xiaojun, AI Fengfeng, LIN Junbing, TANG Jiangjiang. Chemical constituents extracted from Dictamnus dasycarpus and their α-glucosidase inhibitory activity[J]. Journal of China Pharmaceutical University, 2019, 50(1): 41-45. DOI: 10.11665/j.issn.1000-5048.20190105 |
[5] | Pham Thi Anh, LI Junyan, ZHANG Baobao, WANG Hao. Chemical constituents from the n-butanol portions of the fruits of Eucalyptus globulus[J]. Journal of China Pharmaceutical University, 2018, 49(4): 422-426. DOI: 10.11665/j.issn.1000-5048.20180406 |
[6] | MA Lin, ZHANG Yaozhou, DANG Jun. Chemical constituents from water extract of Armillaria luteo-virens[J]. Journal of China Pharmaceutical University, 2016, 47(3): 291-293. DOI: 10.11665/j.issn.1000-5048.20160307 |
[7] | YIN Minmin, YIN Zhiqi, ZHANG Jian, WANG Lei, YE Wencai. Chemical constituents from ethyl acetate extract of Cynanchum otophyllum Schneid.[J]. Journal of China Pharmaceutical University, 2013, 44(3): 213-218. DOI: 10.11665/j.issn.1000-5048.20130305 |
[8] | SUN Jing, YIN Zhi-qi, ZHANG Qing-wen, YE Wen-cai, WANG Yi-ta, ZHAO Shou-xun. Chemical constituents from ethyl acetate extract of Ganoderma lucidum[J]. Journal of China Pharmaceutical University, 2011, 42(3): 220-222. |
[9] | Chemical constituents from n-butanol extract of the stems of Lonicera japonica[J]. Journal of China Pharmaceutical University, 2010, 41(4): 333-336. |
[10] | Hypoglycemic Effects of Extracts and Constituents from Euonymus alatus[J]. Journal of China Pharmaceutical University, 2003, (2): 32-35. |