Citation: | MEI Yinliu, WU Jie. Application of nanoparticles in wound healing of diabetes[J]. Journal of China Pharmaceutical University, 2022, 53(1): 25-31. DOI: 10.11665/j.issn.1000-5048.20220104 |
[1] |
. Diabetes Res Clin Pract,2019,157:107843.
|
[2] |
Lim JZ,Ng NS,Thomas C. Prevention and treatment of diabetic foot ulcers[J]. J R Soc Med,2017,110(3):104-109.
|
[3] |
Sayiner ZA,Can FI,Akarsu E. Patients'' clinical charecteristics and predictors for diabetic foot amputation[J]. Prim Care Diabetes,2019,13(3):247-251.
|
[4] |
Baltzis D,Eleftheriadou I,Veves A. Pathogenesis and treatment of impaired wound healing in diabetes mellitus:new insights[J]. Adv Ther,2014,31(8):817-836.
|
[5] |
Hamdan S,Pastar I,Drakulich S,et al. Nanotechnology-driven therapeutic interventions in wound healing:potential uses and applications[J]. ACS Cent Sci,2017,3(3):163-175.
|
[6] |
Whittam AJ,Maan ZN,Duscher D,et al. Challenges and opportunities in drug delivery for wound healing[J]. Adv Wound Care (New Rochelle),2016,5(2):79-88.
|
[7] |
Goyal R,Macri LK,Kaplan HM,et al. Nanoparticles and nanofibers for topical drug delivery[J]. J Control Release,2016,240:77-92.
|
[8] |
Son YJ,Tse JW,Zhou Y,et al. Biomaterials and controlled release strategy for epithelial wound healing[J]. Biomater Sci,2019,7(11):4444-4471.
|
[9] |
Malone-Povolny MJ,Maloney SE,Schoenfisch MH. Nitric oxide therapy for diabetic wound healing[J]. Adv Healthc Mater,2019,8(12):
|
[10] |
Wang NQ,Yang XY,Du GH. Advances in research on mechanisms of diabetic wound healing[J]. Acta Pharm Sin (药学学报),2020,55(12):2811-2817.
|
[11] |
Hesketh M,Sahin KB,West ZE,et al. Macrophage phenotypes regulate scar formation and chronic wound healing[J]. Int J Mol Sci,2017,18(7):1545.
|
[12] |
Akita S. Wound repair and regeneration:mechanisms,signaling[J]. Int J Mol Sci,2019,20(24):6328.
|
[13] |
Childs DR,Murthy AS. Overview of wound healing and management[J]. Surg Clin North Am,2017,97(1):189-207.
|
[14] |
Reinke JM,Sorg H. Wound repair and regeneration[J]. Eur Surg Res,2012,49(1):35-43.
|
[15] |
Guo S,Dipietro LA. Factors affecting wound healing[J]. J Dent Res,2010,89(3):219-229.
|
[16] |
Zhao RL,Liang H,Clarke E,et al. Inflammation in chronic wounds[J]. Int J Mol Sci,2016,17(12):2085.
|
[17] |
Niimi N,Yako H,Takaku S,et al. Aldose reductase and the polyol pathway in Schwann cells:old and new problems[J]. Int J Mol Sci,2021,22(3):1031.
|
[18] |
Ezhilarasu H,Vishalli D,Dheen ST,et al. Nanoparticle-based therapeutic approach for diabetic wound healing[J]. Nanomaterials,2020,10(6):1234.
|
[19] |
Tang WH,Martin KA,Hwa J. Aldose reductase,oxidative stress,and diabetic mellitus[J]. Front Pharmacol,2012,3:87.
|
[20] |
Feldman EL,Callaghan BC,Pop-Busui R,et al. Diabetic neuropathy[J]. Nat Rev Dis Primers,2019,5(1):41.
|
[21] |
Roca-Agujetas V,de Dios C,Lestón L,et al. Recent insights into the mitochondrial role in autophagy and its regulation by oxidative stress[J]. Oxid Med Cell Longev,2019,2019:3809308.
|
[22] |
Pang L,Lian X,Liu H,et al. Understanding diabetic neuropathy:focus on oxidative stress[J]. Oxid Med Cell Longev,2020,2020:9524635.
|
[23] |
Pitocco D,Spanu T,Di Leo M,et al. Diabetic foot infections:a comprehensive overview[J]. Eur Rev Med Pharmacol Sci,2019,23(2
|
[24] |
Tocco I,Zavan B,Bassetto F,et al. Nanotechnology-based therapies for skin wound regeneration[J]. J Nanomater,2012,2012:1-11.
|
[25] |
Zhou Z. Liposome formulation of fullerene-based molecular diagnostic and therapeutic agents[J]. Pharmaceutics,2013,5(4):525-541.
|
[26] |
Hosseini A,Sharifzadeh M,Rezayat SM,et al. Benefit of magnesium-25 carrying porphyrin-fullerene nanoparticles in experimental diabetic neuropathy[J]. Int J Nanomedicine,2010,5:517-523.
|
[27] |
Gao J,Wang HL,Iyer R. Suppression of proinflammatory cytokines in functionalized fullerene-exposed dermal keratinocytes[J]. J Nanomater,2010,2010:1-9.
|
[28] |
Zhou ZG,Joslin S,Dellinger A,et al. A novel class of compounds with cutaneous wound healing properties[J]. J Biomed Nanotechnol,2010,6(5):605-611.
|
[29] |
Chakraborty S,Ponrasu T,Chandel S,et al. Reduced graphene oxide-loaded nanocomposite scaffolds for enhancing angiogenesis in tissue engineering applications[J]. R Soc Open Sci,2018,5(5):172017.
|
[30] |
Fu JP,Zhang Y,Chu J,et al. Reduced graphene oxide incorporated acellular dermal composite scaffold enables efficient local delivery of mesenchymal stem cells for accelerating diabetic wound healing[J]. ACS Biomater Sci Eng,2019,5(8):4054-4066.
|
[31] |
Li J,Zhou C,Luo C,et al. N-acetyl cysteine-loaded graphene oxide-collagen hybrid membrane for scarless wound healing[J]. Theranostics,2019,9(20):5839-5853.
|
[32] |
Kalashnikova I,Das S,Seal S. Nanomaterials for wound healing:scope and advancement[J]. Nanomedicine (Lond),2015,10(16):2593-2612.
|
[33] |
Lansdown ABG. Calcium:a potential central regulator in wound healing in the skin[J]. Wound Repair Regen,2002,10(5):271-285.
|
[34] |
Kawai K,Larson BJ,Ishise H,et al. Calcium-based nanoparticles accelerate skin wound healing[J]. PLoS One,2011,6(11):
|
[35] |
Gan J,Liu C,Li H,et al. Accelerated wound healing in diabetes by reprogramming the macrophages with particle-induced clustering of the mannose receptors[J]. Biomaterials,2019,219:119340.
|
[36] |
Leal EC,Carvalho E,Tellechea A,et al. Substance P promotes wound healing in diabetes by modulating inflammation and macrophage phenotype[J]. Am J Pathol,2015,185(6):1638-1648.
|
[37] |
Yan D,Liu S,Zhao X,et al. Recombinant human granulocyte macrophage colony stimulating factor in deep second-degree burn wound healing[J]. Medicine (Baltimore),2017,96(22):
|
[38] |
Gan J,Dou Y,Li Y,et al. Producing anti-inflammatory macrophages by nanoparticle-triggered clustering of mannose receptors[J]. Biomaterials,2018,178:95-108.
|
[39] |
Lin C,Mao C,Zhang J,et al. Healing effect of bioactive glass ointment on full-thickness skin wounds[J]. Biomed Mater,2012,7(4):
|
[40] |
Dong X,Chang J,Li H. Bioglass promotes wound healing through modulating the paracrine effects between macrophages and repairing cells[J]. J Mater Chem B,2017,5(26):5240-5250.
|
[41] |
Nadworny PL,Landry BK,Wang J,et al. Does nanocrystalline silver have a transferable effect[J]? Wound Repair Regen,2010,18(2):254-265.
|
[42] |
Zhang XF,Liu ZG,Shen W,et al. Silver nanoparticles:synthesis,characterization,properties,applications,and therapeutic approaches[J]. Int J Mol Sci,2016,17(9):1534.
|
[43] |
Liu X,Lee PY,Ho CM,et al. Silver nanoparticles mediate differential responses in keratinocytes and fibroblasts during skin wound healing[J]. ChemMedChem,2010,5(3):468-475.
|
[44] |
Brem H,Tomic-Canic M. Cellular and molecular basis of wound healing in diabetes[J]. J Clin Invest,2007,117(5):1219-1222.
|
[45] |
Ai J,Biazar E,Jafarpour M,et al. Nanotoxicology and nanoparticle safety in biomedical designs[J]. Int J Nanomedicine,2011,6:1117-1127.
|
[46] |
Orlowski P,Zmigrodzka M,Tomaszewska E,et al. Polyphenol-conjugated bimetallic Au@AgNPs for improved wound healing[J]. Int J Nanomed,2020,15:4969-4990.
|
[47] |
Choudhury H,Pandey M,Lim YQ,et al. Silver nanoparticles:Advanced and promising technology in diabetic wound therapy[J]. Mater Sci Eng C Mater Biol Appl,2020,112:110925.
|
[48] |
Barathmanikanth S,Kalishwaralal K,Sriram M,et al. Anti-oxidant effect of gold nanoparticles restrains hyperglycemic conditions in diabetic mice[J]. J Nanobiotechnology,2010,8:16.
|
[49] |
Li SH,Tang QY,Xu HB,et al. Improved stability of KGF by conjugation with gold nanoparticles for diabetic wound therapy[J]. Nanomed Lond Engl,2019,14(22):2909-2923.
|
[50] |
Randeria PS,Seeger MA,Wang XQ,et al. siRNA-based spherical nucleic acids reverse impaired wound healing in diabetic mice by ganglioside GM3 synthase knockdown[J]. Proc Natl Acad Sci U S A,2015,112(18):5573-5578.
|
[51] |
Zhao Y,Cai QL,Qi W,et al. BSA-CuS nanoparticles for photothermal therapy of diabetic wound infection in vivo[J]. ChemistrySelect,2018,3(32):9510-9516.
|
[52] |
Augustine R,Hasan A,Patan NK,et al. Cerium oxide nanoparticle incorporated electrospun poly(3-hydroxybutyrate-co-3-hydroxyvalerate) membranes for diabetic wound healing applications[J]. ACS Biomater Sci Eng,2020,6(1):58-70.
|
[53] |
Zgheib C,Hilton SA,Dewberry LC,et al. Use of cerium oxide nanoparticles conjugated with MicroRNA-146a to correct the diabetic wound healing impairment[J]. J Am Coll Surg,2019,228(1):107-115.
|
[54] |
Lin PH,Sermersheim M,Li HC,et al. Zinc in wound healing modulation[J]. Nutrients,2017,10(1):16.
|
[55] |
Chandika P,Ko SC,Jung WK. Marine-derived biological macromolecule-based biomaterials for wound healing and skin tissue regeneration[J]. Int J Biol Macromol,2015,77:24-35.
|
[56] |
Porporato PE,Payen VL,De Saedeleer CJ,et al. Lactate stimulates angiogenesis and accelerates the healing of superficial and ischemic wounds in mice[J]. Angiogenesis,2012,15(4):581-592.
|
[57] |
Danhier F,Ansorena E,Silva JM,et al. PLGA-based nanoparticles:an overview of biomedical applications[J]. J Control Release,2012,161(2):505-522.
|
[58] |
Chereddy KK,Coco R,Memvanga PB,et al. Combined effect of PLGA and curcumin on wound healing activity[J]. J Control Release,2013,171(2):208-215.
|
[59] |
Hasan N,Cao J,Lee J,et al. PEI/NONOates-doped PLGA nanoparticles for eradicating methicillin-resistant Staphylococcus aureus biofilm in diabetic wounds via binding to the biofilm matrix[J]. Mater Sci Eng C Mater Biol Appl,2019,103:109741.
|
[60] |
Gourishetti K,Keni R,Nayak PG,et al. Sesamol-loaded PLGA nanosuspension for accelerating wound healing in diabetic foot ulcer in rats[J]. Int J Nanomedicine,2020,15:9265-9282.
|
[61] |
Sun M,Xie Q,Cai X,et al. Preparation and characterization of epigallocatechin gallate,ascorbic acid,gelatin,chitosan nanoparticles and their beneficial effect on wound healing of diabetic mice[J]. Int J Biol Macromol,2020,148:777-784.
|
[62] |
Ribeiro MC,Correa VLR,FKLDSilva,et al. Wound healing treatment using insulin within polymeric nanoparticles in the diabetes animal model[J]. Eur J Pharm Sci,2020,150:105330.
|
[63] |
Guevara ML,Persano S,Persano F. Lipid-based vectors for therapeutic mRNA-based anti-cancer vaccines[J]. Curr Pharm Des,2019,25(13):1443-1454.
|
[64] |
Cullis PR,Hope MJ. Lipid nanoparticle systems for enabling gene therapies[J]. Mol Ther,2017,25(7):1467-1475.
|
[65] |
Guevara ML,Persano F,Persano S. Advances in lipid nanoparticles for mRNA-based cancer immunotherapy[J]. Front Chem,2020,8:589959.
|
[66] |
Kasiewicz LN,Whitehead KA. Lipid nanoparticles silence tumor necrosis factor α to improve wound healing in diabetic mice[J]. Bioeng Transl Med,2019,4(1):75-82.
|
[67] |
Saporito F,Sandri G,Bonferoni MC,et al. Essential oil-loaded lipid nanoparticles for wound healing[J]. Int J Nanomedicine,2018,13:175-186.
|
1. |
郑忠芹,孟杰. 无机纳米材料用于糖尿病创口愈合的研究进展. 西南民族大学学报(自然科学版). 2023(04): 401-407 .
![]() |