• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
YANG Qinglin, HAN Leiqiang, LIU Yongjun, ZHANG Na. Construction of albumin corona and its application in pharmaceutical preparation[J]. Journal of China Pharmaceutical University, 2023, 54(1): 49-55. DOI: 10.11665/j.issn.1000-5048.20220427003
Citation: YANG Qinglin, HAN Leiqiang, LIU Yongjun, ZHANG Na. Construction of albumin corona and its application in pharmaceutical preparation[J]. Journal of China Pharmaceutical University, 2023, 54(1): 49-55. DOI: 10.11665/j.issn.1000-5048.20220427003

Construction of albumin corona and its application in pharmaceutical preparation

Funds: This study was supported by the National Natural Science Foundation of China (No.81974498; No.82003704)
More Information
  • Received Date: April 26, 2022
  • Revised Date: March 01, 2023
  • Protein corona is a protein layer that adsorbs on the surface after nonspecific interactions between nanoparticles and plasma proteins.In recent years, studies have shown that modification of specific plasma proteins on the surface of nanoparticles to construct protein corona can prolong the blood half-life of nanoparticles and promote the targeted delivery of nanoparticles, which has attracted widespread attention to the study of drug-carrying systems, among which, albumin corona, the most abundant protein in blood, is the most widely studied.Based on the above, this paper systematically summarized the method of constructing albumin corona and its application in the research on pharmaceutical preparations, in order to provide reference for the construction of albumin corona in the process of drug preparation.
  • [1]
    . Proc Natl Acad Sci U S A,2007,104(7):2050-2055.
    [2]
    Cai R,Chen CY. The crown and the scepter:roles of the protein Corona in nanomedicine[J]. Adv Mater,2019,31(45):e1805740.
    [3]
    Zhang Z,Guan J,Jiang ZX,et al. Brain-targeted drug delivery by manipulating protein corona functions[J]. Nat Commun,2019,10(1):3561.
    [4]
    Li LH,Zhang Q,Li JY,et al. Targeted delivery of doxorubicin using transferrin-conjugated carbon dots for cancer therapy[J]. ACS Appl Bio Mater,2021,4(9):7280-7289.
    [5]
    Wang CY,Zhang C,Li ZL,et al. Extending half life of H-ferritin nanoparticle by fusing albumin binding domain for doxorubicin encapsulation[J]. Biomacromolecules,2018,19(3):773-781.
    [6]
    Yin XL,Han LQ,Mu SJ,et al. Preparation and evaluation of etoposide-loaded lipid-based nanosuspensions for high-dose treatment of lymphoma[J]. Nanomedicine (Lond),2019,14(11):1403-1427.
    [7]
    Peng Q,Zhang S,Yang Q,et al. Preformed albumin corona,a protective coating for nanoparticles based drug delivery system[J]. Biomaterials,2013,34(33):8521-8530.
    [8]
    Li ZB,Li D,Zhang WJ,et al. Insight into the preformed albumin corona on in vitro and in vivo performances of albumin-selective nanoparticles[J]. Asian J Pharm Sci,2019,14(1):52-62.
    [9]
    Zhang D,Yang JC,Guan JB,et al. In vivo tailor-made protein corona of a prodrug-based nanoassembly fabricated by redox dual-sensitive paclitaxel prodrug for the superselective treatment of breast cancer[J]. Biomater Sci,2018,6(9):2360-2374.
    [10]
    Spada A,Emami J,Tuszynski JA,et al. The uniqueness of albumin as a carrier in nanodrug delivery[J]. Mol Pharm,2021,18(5):1862-1894.
    [11]
    Zhang ZP,Wang TQ,Yang R,et al. Small morph nanoparticles for deep tumor penetration via caveolae-mediated transcytosis[J]. ACS Appl Mater Interfaces,2020,12(34):38499-38511.
    [12]
    Tan TT,Yang Q,Chen D,et al. Chondroitin sulfate-mediated albumin corona nanoparticles for the treatment of breast cancer[J]. Asian J Pharm Sci,2021,16(4):508-518.
    [13]
    Zhang L,Fan J,Li GL,et al. Transcellular model for neutral and charged nanoparticles across an in vitro blood-brain barrier[J]. Cardiovasc Eng Tech,2020,11(6):607-620.
    [14]
    Pang ZQ,Gao HL,Chen J,et al. Intracellular delivery mechanism and brain delivery kinetics of biodegradable cationic bovine serum albumin-conjugated polymersomes[J]. Int J Nanomedicine,2012,7:3421-3432.
    [15]
    Ghuman J,Zunszain PA,Petitpas I,et al. Structural basis of the drug-binding specificity of human serum albumin[J]. J Mol Biol,2005,353(1):38-52.
    [16]
    Chen Q,Wang C,Cheng L,et al. Protein modified upconversion nanoparticles for imaging-guided combined photothermal and photodynamic therapy[J]. Biomaterials,2014,35(9):2915-2923.
    [17]
    Hoonjan M,Sachdeva G,Chandra S,et al. Investigation of HSA as a biocompatible coating material for arsenic trioxide nanoparticles[J]. Nanoscale,2018,10(17):8031-8041.
    [18]
    Pan ZC,He XL,Song NJ,et al. Albumin-modified cationic nanocarriers to potentially create a new platform for drug delivery systems[J]. ACS Appl Mater Interfaces,2019,11(18):16421-16429.
    [19]
    Chen ZY,Sun Q,Yao YH,et al. Highly sensitive detection of cysteine over glutathione and homo-cysteine:new insight into the Michael addition of mercapto group to maleimide[J]. Biosens Bioelectron,2017,91:553-559.
    [20]
    Hoogenboezem EN,Duvall CL. Harnessing albumin as a carrier for cancer therapies[J]. Adv Drug Deliv Rev,2018,130:73-89.
    [21]
    Kratz F,Warnecke A,Scheuermann K,et al. Probing the cysteine-34 position of endogenous serum albumin with thiol-binding doxorubicin derivatives. Improved efficacy of an acid-sensitive doxorubicin derivative with specific albumin-binding properties compared to that of the parent compound[J]. J Med Chem,2002,45(25):5523-5533.
    [22]
    Yousefpour P,McDaniel JR,Prasad V,et al. Genetically encoding albumin binding into chemotherapeutic-loaded polypeptide nanoparticles enhances their antitumor efficacy[J]. Nano Lett,2018,18(12):7784-7793.
    [23]
    Miyakawa N,Nishikawa M,Takahashi Y,et al. Gene delivery of albumin binding peptide-interferon-gamma fusion protein with improved pharmacokinetic properties and sustained biological activity[J]. J Pharm Sci,2013,102(9):3110-3118.
    [24]
    Ding D,Yang C,Lv C,et al. Improving tumor accumulation of aptamers by prolonged blood circulation[J]. Anal Chem,2020,92(5):4108-4114.
    [25]
    Shan LL,Zhuo X,Zhang FW,et al. A paclitaxel prodrug with bifunctional folate and albumin binding moieties for both passive and active targeted cancer therapy[J]. Theranostics,2018,8(7):2018-2030.
    [26]
    Zhu GZ,Lynn GM,Jacobson O,et al. Albumin/vaccine nano complexes that assemble in vivo for combination cancer immunotherapy[J]. Nat Commun,2017,8(1):1954.
    [27]
    Hyun H,Park J,Willis K,et al. Surface modification of polymer nanoparticles with native albumin for enhancing drug delivery to solid tumors[J]. Biomaterials,2018,180:206-224.
    [28]
    Lee HA,Park E,Lee H. Polydopamine and its derivative surface chemistry in material science:a focused review for studies at KAIST[J]. Adv Mater,2020,32(35):e1907505.
    [29]
    Kim H,Yuk SA,Dieterly AM,et al. Nanosac,a noncationic and soft polyphenol nanocapsule,enables systemic delivery of siRNA to solid tumors[J]. ACS Nano,2021,15(3):4576-4593.
    [30]
    Takeuchi T,Kitayama Y,Sasao R,et al. Molecularly imprinted nanogels acquire stealth in situ by cloaking themselves with native dysopsonic proteins[J]. Angew Chem Int Ed Engl,2017,56(25):7088-7092.
    [31]
    Yu YN,Luan YN,Dai W. Dynamic process,mechanisms,influencing factors and study methods of protein corona formation[J]. Int J Biol Macromol,2022,205:731-739.
    [32]
    Shanwar S,Liang LE,Nechaev AV,et al. Controlled formation of a protein Corona composed of denatured BSA on upconversion nanoparticles improves their colloidal stability[J]. Materials (Basel),2021,14(7):1657.
    [33]
    Xia B,Zhang WY,Shi JS,et al. Engineered stealth porous silicon nanoparticles via surface encapsulation of bovine serum albumin for prolonging blood circulation in vivo[J]. ACS Appl Mater Interfaces,2013,5(22):11718-11724.
    [34]
    Guindani C,Frey ML,Simon J,et al. Covalently binding of bovine serum albumin to unsaturated poly(globalide-Co-ε-caprolactone) nanoparticles by thiol-ene reactions[J]. Macromol Biosci,2019,19(10):e1900145.
  • Related Articles

    [1]LAN Aili, LIU Gang, WU Chaoran, LIAO Hong. Research progress of integrated stress response in central nervous system diseases[J]. Journal of China Pharmaceutical University, 2024, 55(2): 194-201. DOI: 10.11665/j.issn.1000-5048.2023112302
    [2]FENG Wanting, DENG Yaochen, ZHANG Hui, LI Meng, WANG Zengming, ZHENG Aiping. Research progress of taste masking and evaluation technology of medicine[J]. Journal of China Pharmaceutical University, 2023, 54(4): 410-420. DOI: 10.11665/j.issn.1000-5048.20221106002
    [3]WAN Li, SUN Jinnan, DING Zuoqi, HAO Haiping. Research on the development of bio-pharmaceutical industry integration and collaborative innovation in the Yangtze River Delta under the mode of Industry-University-Research cooperation[J]. Journal of China Pharmaceutical University, 2022, 53(6): 742-752. DOI: 10.11665/j.issn.1000-5048.20220614
    [4]ZHAO Yifei, GENG Xin, XU Lihua, OU Ting, ZHANG Ning. Considerations on the chemistry, manufacture and control requirements for conditional marketing authorization drugs in China[J]. Journal of China Pharmaceutical University, 2021, 52(5): 636-642. DOI: 10.11665/j.issn.1000-5048.20210518
    [5]HU Wanwan, DING Xuefeng, CAI Yanfei, CHEN Yun, DUAN Zuoying, JIN Jian, LI Huazhong. Site-specific integration and stable expression of exogenous protein at a novel site on CHO cell chromosome[J]. Journal of China Pharmaceutical University, 2021, 52(4): 487-495. DOI: 10.11665/j.issn.1000-5048.20210412
    [6]GONG Siman, LAN Siyi, LI Jing, SUN Minjie. Application of iron oxide magnetic nanoparticles in tumor theranostics[J]. Journal of China Pharmaceutical University, 2019, 50(5): 531-539. DOI: 10.11665/j.issn.1000-5048.20190504
    [7]WANG Zian, LIU Yang, WANG Peng, JIANG Yifei, JI Min. Preparation, in vitro imaging and antitumor activity of the second near-infrared imaging drug-loaded liposomes[J]. Journal of China Pharmaceutical University, 2019, 50(4): 438-443. DOI: 10.11665/j.issn.1000-5048.20190408
    [8]XING Xiaoqing, BU Xiumin, CHU Yanan, ZOU Bingjie, SONG Qinxin, ZHOU Guohua. Genotype method for SNPs related to individualized aspirin treatment based on pyrosequencing technology[J]. Journal of China Pharmaceutical University, 2017, 48(5): 577-582. DOI: 10.11665/j.issn.1000-5048.20170512
    [9]TANG Linfang, ZHANG Ziqiang, SU Rina, HE Shuwang, YAO Jing. Advances in taste-masking technology of oral paediatric medicine[J]. Journal of China Pharmaceutical University, 2017, 48(2): 135-141. DOI: 10.11665/j.issn.1000-5048.20170202
    [10]WANG Xue, ZHANG Can, PING Qineng. Advances of 3D printing technology in advanced pharmaceutical preparations[J]. Journal of China Pharmaceutical University, 2016, 47(2): 140-147. DOI: 10.11665/j.issn.1000-5048.20160203
  • Cited by

    Periodical cited type(1)

    1. 马小翔,马泽源,刘亚月,周龙建,和羿帆,张翼. 仿突变生物合成调控对土曲霉C23-3次生代谢产物的影响. 生物技术通报. 2024(08): 275-287 .

    Other cited types(0)

Catalog

    Article views (458) PDF downloads (777) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return