Citation: | BAI Yan, GUO Xinyao, QIN Qiliang, YAN Fang. Advances in research on mechanism of lactate dehydrogenase B in tumors[J]. Journal of China Pharmaceutical University, 2023, 54(2): 172-179. DOI: 10.11665/j.issn.1000-5048.20221112001 |
[1] |
Jones RG, Thompson CB. Tumor suppressors and cell metabolism: a recipe for cancer growth[J]. Genes Dev, 2009, 23(5): 537-548.
|
[2] |
Warburg O. On the origin of cancer cells[J]. Science, 1956, 123(3191): 309-314.
|
[3] |
Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis[J]? Nat Rev Cancer, 2004, 4(11): 891-899.
|
[4] |
Xu RH, Pelicano H, Zhou Y, et al. Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia[J]. Cancer Res, 2005, 65(2): 613-621.
|
[5] |
de la Cruz-López KG, Castro-Mu?oz LJ, Reyes-Hernández DO, et al. Lactate in the regulation of tumor microenvironment and therapeutic approaches[J]. Front Oncol, 2019, 9: 1143.
|
[6] |
Feng YB, Xiong YL, Qiao TY, et al. Lactate dehydrogenase A: a key player in carcinogenesis and potential target in cancer therapy[J]. Cancer Med, 2018, 7(12): 6124-6136.
|
[7] |
McCleland ML, Adler AS, Deming L, et al. Lactate dehydrogenase B is required for the growth of KRAS-dependent lung adenocarcinomas[J]. Clin Cancer Res, 2013, 19(4): 773-784.
|
[8] |
Wang RG, Li JB, Zhang CJ, et al. Lactate dehydrogenase B is required for pancreatic cancer cell immortalization through activation of telomerase activity[J]. Front Oncol, 2022, 12: 821620.
|
[9] |
Liu J, Chen G, Liu Z, et al. Aberrant FGFR tyrosine kinase signaling enhances the Warburg effect by reprogramming LDH isoform expression and activity in prostate cancer[J]. Cancer Res, 2018, 78(16): 4459-4470.
|
[10] |
Urbańska K, Orzechowski A. Unappreciated role of LDHA and LDHB to control apoptosis and autophagy in tumor cells[J]. Int J Mol Sci, 2019, 20(9): 2085.
|
[11] |
Moreno-Sánchez R, Rodríguez-Enríquez S, Marín-Hernández A, et al. Energy metabolism in tumor cells[J]. FEBS J, 2007, 274(6): 1393-1418.
|
[12] |
Cascardo F, Anselmino N, Páez A, et al. HO-1 modulates aerobic glycolysis through LDH in prostate cancer cells[J]. Antioxidants (Basel), 2021, 10(6): 966.
|
[13] |
Mishra D, Banerjee D. Lactate dehydrogenases as metabolic links between tumor and stroma in the tumor microenvironment[J]. Cancers (Basel), 2019, 11(6): 750.
|
[14] |
Liu HB, Li S, Wang XY, et al. DNA methylation dynamics: identification and functional annotation[J]. Brief Funct Genomics, 2016, 15(6): 470-484.
|
[15] |
Cui JJ, Quan M, Jiang WH, et al. Suppressed expression of LDHB promotes pancreatic cancer progression via inducing glycolytic phenotype[J]. Med Oncol, 2015, 32(5): 143.
|
[16] |
Zhang W, Tong D, Liu F, et al. RPS7 inhibits colorectal cancer growth via decreasing HIF-1α-mediated glycolysis[J]. Oncotarget, 2016, 7(5): 5800-5814.
|
[17] |
Jiang P, Huang M, Qi WW, et al. FUBP1 promotes neuroblastoma proliferation via enhancing glycolysis — a new possible marker of malignancy for neuroblastoma[J]. J Exp Clin Cancer Res, 2019, 38(1): 400.
|
[18] |
Nam K, Oh S, Shin I. Ablation of CD44 induces glycolysis-to-oxidative phosphorylation transition via modulation of the c-Src-Akt-LKB1-AMPKα pathway[J]. Biochem J, 2016, 473(19): 3013-3030.
|
[19] |
Bromberg JF, Wrzeszczynska MH, Devgan G, et al. Stat3 as an oncogene[J]. Cell, 1999, 98(3): 295-303.
|
[20] |
Zha XJ, Wang F, Wang Y, et al. Lactate dehydrogenase B is critical for hyperactive mTOR-mediated tumorigenesis[J]. Cancer Res, 2011, 71(1): 13-18.
|
[21] |
Hao JS, Zhu CJ, Yan BY, et al. Stimulation of KLF14/PLK1 pathway by thrombin signaling potentiates endothelial dysfunction in type 2 diabetes mellitus[J]. Biomed Pharmacother, 2018, 99: 859-866.
|
[22] |
Wu GY, Yuan SC, Chen ZP, et al. The KLF14 transcription factor regulates glycolysis by downregulating LDHB in colorectal cancer[J]. Int J Biol Sci, 2019, 15(3): 628-635.
|
[23] |
Hill M, Tran N. miRNA interplay: mechanisms and consequences in cancer[J]. Dis Model Mech, 2021, 14(4):
|
[24] |
Kumar S, Xie H, Scicluna P, et al. MiR-375 regulation of LDHB plays distinct roles in polyomavirus-positive and-negative merkel cell carcinoma[J]. Cancers (Basel), 2018, 10(11): 443.
|
[25] |
Wang JM, Jiang JY, Zhang DL, et al. HYOU1 facilitates proliferation, invasion and glycolysis of papillary thyroid cancer via stabilizing LDHB mRNA[J]. J Cell Mol Med, 2021, 25(10): 4814-4825.
|
[26] |
Yang H, Jiang Z, Wang S, et al. Long non-coding small nucleolar RNA host genes in digestive cancers[J]. Cancer Med, 2019, 8(18): 7693-7704.
|
[27] |
La Montagna M, Shi L, Magee P, et al. AMPKα loss promotes KRAS-mediated lung tumorigenesis[J]. Cell Death Differ, 2021, 28(9): 2673-2689.
|
[28] |
Liu J, Li Y, Chen XQ, et al. rs11046147 mutation in the promoter region of lactate dehydrogenase-B as a potential predictor of prognosis in triple-negative breast cancer[J]. Cancer Commun, 2020, 40(6): 279-282.
|
[29] |
Liu JN, Wang Q, Kang YJ, et al. Unconventional protein post-translational modifications: the helmsmen in breast cancer[J]. Cell Biosci, 2022, 12(1): 22.
|
[30] |
Shi L, Yan H, An SX, et al. SIRT5-mediated deacetylation of LDHB promotes autophagy and tumorigenesis in colorectal cancer[J]. Mol Oncol, 2019, 13(2): 358-375.
|
[31] |
Cheng AX, Zhang P, Wang B, et al. Aurora-A mediated phosphorylation of LDHB promotes glycolysis and tumor progression by relieving the substrate-inhibition effect[J]. Nat Commun, 2019, 10(1): 5566.
|
[32] |
Wang L. miR-141-3p overexpression suppresses the malignancy of osteosarcoma by targeting FUS to degrade LDHB[J]. Biosci Rep, 2020, 40(6):
|
[33] |
Luo Y, Yang ZL, Li DQ, et al. LDHB and FABP4 are associated with progression and poor prognosis of pancreatic ductal adenocarcinomas[J]. Appl Immunohistochem Mol Morphol, 2017, 25(5): 351-357.
|
[34] |
Yustisia I, Amriani R, Cangara H, et al. High expression of FBP1 and LDHB in fibroadenomas and invasive breast cancers[J]. Breast Dis, 2021, 40(4): 251-256.
|
[35] |
Deng HB, Gao YY, Trappetti V, et al. Targeting lactate dehydrogenase B-dependent mitochondrial metabolism affects tumor initiating cells and inhibits tumorigenesis of non-small cell lung cancer by inducing mtDNA damage[J]. Cell Mol Life Sci, 2022, 79(8): 445.
|
[36] |
Li C, Chen Y, Bai P, et al. LDHB may be a significant predictor of poor prognosis in osteosarcoma[J]. Am J Transl Res, 2016, 8(11): 4831-4843.
|
[37] |
McCleland ML, Adler AS, Shang Y, et al. An integrated genomic screen identifies LDHB as an essential gene for triple-negative breast cancer[J]. Cancer Res, 2012, 72(22): 5812-5823.
|
[38] |
Brisson L, Bański P, Sboarina M, et al. Lactate dehydrogenase B controls lysosome activity and autophagy in cancer[J]. Cancer Cell, 2016, 30(3): 418-431.
|
[39] |
Sheng KH, Yao YC, Chuang SS, et al. Search for the tumor-related proteins of transition cell carcinoma in Taiwan by proteomic analysis[J]. Proteomics, 2006, 6(3): 1058-1065.
|
[40] |
Chen RH, Zhou X, Yu ZH, et al. Low expression of LDHB correlates with unfavorable survival in hepatocellular carcinoma: strobe-compliant article[J]. Medicine, 2015, 94(39):
|
[41] |
Rosso M, Lapyckyj L, Besso MJ, et al. Characterization of the molecular changes associated with the overexpression of a novel epithelial cadherin splice variant mRNA in a breast cancer model using proteomics and bioinformatics approaches: identification of changes in cell metabolism and an increased expression of lactate dehydrogenase B[J]. Cancer Metab, 2019, 7: 5.
|
[42] |
Fu DY, Li J, Wei JL, et al. HMGB2 is associated with malignancy and regulates Warburg effect by targeting LDHB and FBP1 in breast cancer[J]. Cell Commun Signal, 2018, 16(1): 8.
|
[43] |
Li LF, Wang YF, Wang Q, et al. High developmental pluripotency-associated 4 expression promotes cell proliferation and glycolysis, and predicts poor prognosis in non-small- cell lung cancer[J]. Mol Med Report, 2019,20(1): 445-454.
|
[44] |
Qing Y, Dong L, Gao L, et al. R-2-hydroxyglutarate attenuates aerobic glycolysis in leukemia by targeting the FTO/m6A/PFKP/LDHB axis[J]. Mol Cell, 2021, 81(5): 922-939. e9.
|
[45] |
Du Y, Zhang MJ, Li LL, et al. ATPR triggers acute myeloid leukaemia cells differentiation and cycle arrest via the RARα/LDHB/ERK-glycolysis signalling axis[J]. J Cell Mol Med, 2020, 24(12): 6952-6965.
|
[46] |
Feng MY, Xiong GB, Cao Z, et al. LAT2 regulates glutamine-dependent mTOR activation to promote glycolysis and chemoresistance in pancreatic cancer[J]. J Exp Clin Cancer Res, 2018, 37(1): 274.
|
[47] |
Hong SM, Lee YK, Park I, et al. Lactic acidosis caused by repressed lactate dehydrogenase subunit B expression down-regulates mitochondrial oxidative phosphorylation via the pyruvate dehydrogenase (PDH)-PDH kinase axis[J]. J Biol Chem, 2019, 294(19): 7810-7820.
|
[48] |
Kim JH, Kim EL, Lee YK, et al. Decreased lactate dehydrogenase B expression enhances claudin 1-mediated hepatoma cell invasiveness via mitochondrial defects[J]. Exp Cell Res, 2011, 317(8): 1108-1118.
|
[49] |
Sun W, Zhang X, Ding X, et al. Lactate dehydrogenase B is associated with the response to neoadjuvant chemotherapy in oral squamous cell carcinoma[J]. PLoS One, 2015, 10(5):
|
[50] |
Koh YW, Lee SJ, Park SY. Prognostic significance of lactate dehydrogenase B according to histologic type of non-small-cell lung cancer and its association with serum lactate dehydrogenase[J]. Pathol Res Pract, 2017, 213(9): 1134-1138.
|
[51] |
Li C, Chen S, Jia WM, et al. Identify metabolism-related genes IDO1, ALDH2, NCOA2, SLC7A5, SLC3A2, LDHB, and HPRT1 as potential prognostic markers and correlate with immune infiltrates in head and neck squamous cell carcinoma[J]. Front Immunol, 2022, 13: 955614.
|
[52] |
de Haas T, Hasselt N, Troost D, et al. Molecular risk stratification of medulloblastoma patients based on immunohistochemical analysis of MYC, LDHB, and CCNB1 expression[J]. Clin Cancer Res, 2008, 14(13): 4154-4160.
|
[1] | ZHANG Zhixing, DENG Hua, TANG Yun. Applications and challenges of artificial intelligence in the development of anticancer peptides[J]. Journal of China Pharmaceutical University, 2024, 55(3): 347-356. DOI: 10.11665/j.issn.1000-5048.2024040201 |
[2] | HU Zi’ang, GAO Liming, YU Wenying. Advances in the application of artificial intelligence in nucleic acid drug development[J]. Journal of China Pharmaceutical University, 2024, 55(3): 335-346. DOI: 10.11665/j.issn.1000-5048.2024033101 |
[3] | ZENG Hao, WU Guozhen, ZOU Wuxin, WANG Zhe, SONG Jianfei, SHI Hui, WANG Xiaojian, HOU Tingjun, DENG Yafeng. Optimization of Menin inhibitors based on artificial intelligence-driven molecular factory technology[J]. Journal of China Pharmaceutical University, 2024, 55(3): 326-334. DOI: 10.11665/j.issn.1000-5048.2024040904 |
[4] | TANG qian, CHEN Roufen, SHEN Zheyuan, CHI Xinglong, CHE Jinxin, DONG Xiaowu. Research progress of artificial intelligence-based small molecule generation models in drug discovery[J]. Journal of China Pharmaceutical University, 2024, 55(3): 295-305. DOI: 10.11665/j.issn.1000-5048.2024031501 |
[5] | XUE Feng, FENG Shuo, LI Jing. Application and prospect of artificial intelligence in antimicrobial peptides screening[J]. Journal of China Pharmaceutical University, 2023, 54(3): 314-322. DOI: 10.11665/j.issn.1000-5048.2023030901 |
[6] | GU Zhihao, GUO Wenhao, YAO Hequan, LI Xuanyi, LIN Kejiang. Research progress of the screening and generation of lead compounds based on artificial intelligence model[J]. Journal of China Pharmaceutical University, 2023, 54(3): 294-304. DOI: 10.11665/j.issn.1000-5048.2023042201 |
[7] | YU Zehao, ZHANG Leiming, ZHANG Mengna, DAI Zhiqi, PENG Chengbin, ZHENG Siming. Artificial intelligence-based drug development: current progress and future challenges[J]. Journal of China Pharmaceutical University, 2023, 54(3): 282-293. DOI: 10.11665/j.issn.1000-5048.2023041003 |
[8] | WANG Chao, XIAO Fu, LI Miaozhu, PAN Ying, DING Xiao, REN Feng, ZHAVORONKOV Alex, WANG Yazhou. Application progress of artificial intelligence in the screening and identification of drug targets[J]. Journal of China Pharmaceutical University, 2023, 54(3): 269-281. DOI: 10.11665/j.issn.1000-5048.2023041102 |
[9] | YAN Fangrong. Application and advance of artificial intelligence in biomedical field[J]. Journal of China Pharmaceutical University, 2023, 54(3): 263-268. DOI: 10.11665/j.issn.1000-5048.2023030304 |
[10] | Zhang Zunjian, Yu Shuqin, Xiang Bingren, An Dengkui. A New Artificial Neural Network Model:Combined Counter-Back Propagation and its Application[J]. Journal of China Pharmaceutical University, 1996, (11). |
1. |
赵倩,魏宇,郭凯敏,王文佳,周水平,孙鹤,方坚松,胡蕴慧. 人工智能结合生物网络对“养血清脑制剂”和“逍遥丸”组方的优化及验证. 中药药理与临床. 2024(04): 27-33 .
![]() |