Citation: | RUAN Tingting, JU Wujian, XIONG Haiwei, JIANG Lifang, XU Yue, WANG Guangji. Advances in methodologies for predicting metabolic stability for low-clearance drugs[J]. Journal of China Pharmaceutical University, 2019, 50(2): 152-160. DOI: 10.11665/j.issn.1000-5048.20190204 |
[1] |
Obach RS.Predicting clearance in humans from in vitro data[J].Curr Top Med Chem,2011,11(4):334-339.
|
[2] |
Di L,Obach RS.Addressing the challenges of low clearance in drug research[J].AAPS J,2015,17(2):352-357.
|
[3] |
Di L,Trapa P,Obach RS,et al.A novel relay method for determining low-clearance values[J].Drug Metab Dispos,2012,40(9):1860-1865.
|
[4] |
Grime KH,Barton P,McGinnity DF.Application of in silico,in vitro and preclinical pharmacokinetic data for the effective and efficient prediction of human pharmacokinetics[J].Mol Pharm,2013,10(4):1191-1206.
|
[5] |
Sohlenius-Sternbeck AK,Jones C,Ferguson D,et al.Practical use of the regression offset approach for the prediction of in vivo intrinsic clearance from hepatocytes[J].Xenobiotica,2012,42(9):841-853.
|
[6] |
Chao P,Uss AS,Cheng KC.Use of intrinsic clearance for prediction of human hepatic clearance[J].Exp Opin Drug Metab Toxicol,2010,6(2):189-198.
|
[7] |
Sun LN, Ding L, Yan ZY, et al. Determination the inhibitory potency of bencycloquidium bromide on rat liver cytochrome P450 by LC-MS/MS[J].J China Pharm Univ(中国药科大学学报),2013,44(2):134-140.
|
[8] |
Lin C,Ballinger KR,Khetani SR.The application of engineered liver tissues for novel drug discovery[J].Exp Opin Drug Discov,2015,10(5):519-540.
|
[9] |
Rodriguez-Antona C, Donato MT, Boobis A, et al. Cytochrome P450 expression in human hepatocytes and hepatoma cell lines:molecular mechanisms that determine lower expression in cultured cells[J].Xenobiotica,2002,32(6):505-520.
|
[10] |
Jones HM,Houston JB.Substrate depletion approach for determining in vitro metabolic clearance:time dependencies in hepatocyte and microsomal incubations[J].Drug Metab Dispos,2004,32(9):973-982.
|
[11] |
Di L,Atkinson K,Orozco CC,et al.In vitro-in vivo correlation for low-clearance compounds using hepatocyte relay method[J].Drug Metab Dispos,2013,41(12):2018-2023.
|
[12] |
Ballard TE,Orozco CC,Obach RS.Generation of major human excretory and circulating drug metabolites using a hepatocyte relay method[J].Drug Metab Dispos,2014,42(5):899-902.
|
[13] |
Yang X,Atkinson K,Di L.Novel cytochrome P450 reaction phenotyping for low-clearance compounds using the hepatocyte relay method[J].Drug Metab Dispos,2016,44(3):460-465.
|
[14] |
Peng CC, Doshi U, Prakash C, et al. A novel plated hepatocyte relay assay(PHRA)for in vitro evaluation of hepatic metabolic clearance of slowly metabolized compounds[J].Drug Metab Lett,2016,10(1):3-15.
|
[15] |
Bonn B,Svanberg P,Janefeldt A,et al.Determination of human hepatocyte intrinsic clearance for slowly metabolized compounds:comparison of a primary hepatocyte/stromal cell co-culture with plated primary hepatocytes and HepaRG[J].Drug Metab Dispos,2016,44(4):527-533.
|
[16] |
Griffin SJ,Houston JB.Prediction of in vitro intrinsic clearance from hepatocytes:comparison of suspensions and monolayer cultures[J].Drug Metab Dispos,2005,33(1):115-120.
|
[17] |
Blanchard N,Alexandre E,Abadie C,et al.Comparison of clearance predictions using primary cultures and suspensions of human hepatocytes[J].Xenobiotica,2005,35(1):1-15.
|
[18] |
Smith CM,Nolan CK,Edwards MA,et al.A comprehensive evaluation of metabolic activity and intrinsic clearance in suspensions and monolayer cultures of cryopreserved primary human hepatocytes[J].J Pharm Sci,2012,101(10):3989-4002.
|
[19] |
Hoffmaster KA,Turncliff RZ,LeCluyse EL,et al.P-glycoprotein expression,localization,and function in sandwich-cultured primary rat and human hepatocytes:relevance to the hepatobiliary disposition of a model opioid peptide[J].Pharm Res,2004,21(7):1294-1302.
|
[20] |
Kanda K,Takahashi R,Yoshikado T,et al.Total hepatocellular disposition profiling of rosuvastatin and pitavastatin in sandwich-cultured human hepatocytes[J].Drug Metab Pharmacokinet,2018,33(3):164-172.
|
[21] |
Swift B,Pfeifer ND,Brouwer KL.Sandwich-cultured hepatocytes:an in vitro model to evaluate hepatobiliary transporter-based drug interactions and hepatotoxicity[J].Drug Metab Rev,2010,42(3):446-471.
|
[22] |
Brown JH,Das P,DiVito MD,et al.Nanofibrous PLGA electrospun scaffolds modified with type I collagen influence hepatocyte function and support viability in vitro[J].Acta Biomater,2018,73(4):217-227.
|
[23] |
Oorts M,Keemink J,Deferm N,et al.Extra collagen overlay prolongs the differentiated phenotype in sandwich-cultured rat hepatocytes[J].J Pharmacol Toxicol Methods,2018,90(6):31-38.
|
[24] |
Keemink J,Oorts M,Annaert P.Primary hepatocytes in Sandwich culture[J].Methods Mol Biol,2015,1250(7):175-188.
|
[25] |
Lancett P,Williamson B,Barton P,et al.Development and characterization of a human hepatocyte low intrinsic clearance assay for use in drug discovery[J].Drug Metab Dispos,2018,46(8):1169-1178.
|
[26] |
Treijtel N,Barendregt A,Freidig AP,et al.Modeling the in vitro intrinsic clearence of the slowly metabolized compound tolbutamide determined in sandwich-cultur>,2009,5(10):1159-1174.
|
[27] |
Liu Y,Wei J,Lu J,et al.Micropatterned coculture of hepatocytes on electrospun fibers as a potential in vitro model for predictive drug metabolism[J].Mater Sci Eng C Mater Biol Appl,2016,63:475-484.
|
[28] |
Oda H,Yoshida Y,Kawamura A,et al.Cell shape,cell-cell contact,cell-extracellular matrix contact and cell polarity are all required for the maximum induction of CYP2B1 and CYP2B2 gene expression by phenobarbital in adult rat cultured hepatocytes[J].Biochem Pharmacol,2008,75(5):1209-1217.
|
[29] |
Xiao W,Perry G,Komori K,et al.New physiologically-relevant liver tissue model based on hierarchically cocultured primary rat hepatocytes with liver endothelial cells[J].Integr Biol(Camb),2015,7(11):1412-1422.
|
[30] |
Kostadinova R, Boess F, Applegate D, et al. A long-term three dimensional liver co-culture system for improved prediction of clinically relevant drug-induced hepatotoxicity[J].Toxicol Appl Pharmacol,2013,268(1):1-16.
|
[31] |
Khetani SR,Bhatia SN.Microscale culture of human liver cells for drug development[J].Nat Biotechnol,2008,26(1):120-126.
|
[32] |
March S,Ramanan V,Trehan K,et al.Micropatterned coculture of primary human hepatocytes and supportive cells for the study of hepatotropic pathogens[J].Nat Protoc,2015,10(12):2027-2053.
|
[33] |
Chan TS,Yu H,Moore A,et al.Meeting the challenge of predicting hepatic clearance of compounds slowly metabolized by cytochrome P450 using a novel hepatocyte model,HepatoPac[J].Drug Metab Dispos,2013,41(12):2024-2032.
|
[34] |
Liu YW,Li HN,Yan SL,et al.Hepatocyte cocultures with endothelial cells and fibroblasts on micropatterned fibrous mats to promote liver-specific functions and capillary formation capabilities[J].Biomacromolecules,2014,15(3):1044-1054.
|
[35] |
Ukairo O,Kanchagar C,Moore A,et al.Long-term stability of primary rat hepatocytes in micropatterned cocultures[J].J Biochem Mol Toxicol,2013,27(3):204-212.
|
[36] |
Shen C,Xu XM,Meng Q,et al.Studies on rifampicin and isoniazid-induced hepatotoxicity[J].J China Pharm Univ(中国药科大学学报),2005,36(3):250-230.
|
[37] |
Wang WW, Khetani SR, Krzyzewski S, et al. Assessment of a micropatterned hepatocyte coculture system to generate major human excretory and circulating drug metabolites[J].Drug Metab Dispos,2010,38(10):1900-1905.
|
[38] |
Ramsden D,Tweedie DJ,Chan TS,et al.Bridging in vitro and in vivo metabolism and transport of faldaprevir in human using a novel cocultured human hepatocyte system,HepatoPac[J].Drug Metab Dispos,2014,42(3):394-406.
|
[39] |
Ramsden D,Tweedie DJ,St George R,et al.Generating an in vitro-in vivo correlation for metabolism and liver enrichment of a hepatitis C virus drug,faldaprevir,using a rat hepatocyte model(HepatoPac)[J].Drug Metab Dispos,2014,42(3):407-414.
|
[40] |
Hutzler JM,Ring BJ,Anderson SR.Low-turnover drug molecules:a current challenge for drug metabolism scientists[J].Drug Metab Dispos,2015,43(12):1917-1928.
|
[41] |
Chao P,Maguire T,Novik E,et al.Evaluation of a microfluidic based cell culture platform with primary human hepatocytes for the prediction of hepatic clearance in human[J].Biochem Pharmacol,2009,78(6):625-632.
|
[42] |
Novik E,Maguire TJ,Chao P,et al.A microfluidic hepatic coculture platform for cell-based drug metabolism studies[J].Biochem Pharmacol,2010,79(7):1036-1044.
|
[43] |
Hultman I, Vedin C, Abrahamsson A, et al. Use of HμREL human coculture system for prediction of intrinsic clearance and metabolite formation for slowly metabolized compounds[J].Mol Pharm,2016,13(8):2796-2807.
|
[44] |
Dash A,Inman W,Hoffmaster K,et al.Liver tissue engineering in the evaluation of drug safety[J].Exp Opin Drug Metab Toxicol,2009,5(10):1159-1174.
|
[45] |
Vivares A,Salle-Lefort S,Arabeyre-Fabre C,et al.Morphological behaviour and metabolic capacity of cryopreserved human primary hepatocytes cultivated in a perfused multiwell device[J].Xenobiotica,2015,45(1):29-44.
|
[46] |
Darnell M,Ulvestad M,Ellis E,et al.In vitro evaluation of major in vivo drug metabolic pathways using primary human hepatocytes and HepaRG cells in suspension and a dynamic three-dimensional bioreactor system[J].J Pharmacol Exp Ther,2012,343(1):134-144.
|
[47] |
Darnell M, Schreiter T, Zeilinger K, et al. Cytochrome P450-dependent metabolism in HepaRG cells cultured in a dynamic three-dimensional bioreactor[J].Drug Metab Dispos,2011,39(7):1131-1138.
|
[48] |
Antherieu S,Chesne C,Li R,et al.Stable expression,activity,and inducibility of cytochromes P450 in differentiated HepaRG cells[J].Drug Metab Dispos,2010,38(3):516-525.
|
[49] |
Davies B,Morris T.Physiological parameters in laboratory animals and humans[J].Pharm Res,1993,10(7):1093-1095.
|
[50] |
U.S.Food and Drug Administration.Guidance for industry:Safety Testing of Drug Metabolites[EB/OL].(2016-11-22)[2018-12-17] .https://www.fda.gov/Drugs/Guidanc- eComplianceRegulatoryInfo-rmation/Guidances/ucm065014.htm.
|
[51] |
European Medicines Agency. Guideline on the investigation of drug interactions[EB/OL].(2012-06-21)[2018-12-17] https://www.ema.europa.eu/en/search/search?search_api_views_fulltext=Guideline%-20on%20the%20investigation%20of% 20drug%20interactions.
|
[52] |
Matthew Hutzler J,Linder CD,Melton RJ,et al.In vitro-in vivo correlation and translation to the clinical outcome for CJ-13,610,a novel inhibitor of 5-lipoxygenase[J].Drug Metab Dispos,2010,38(7):1113-1121.
|
[53] |
Zientek MA,Youdim K.Reaction phenotyping:advances in the experimental strategies used to characterize the contribution of drug-metabolizing enzymes[J].Drug Metab Dispos,2015,43(1):163-181.
|
[54] |
Oda S,Fukami T,Yokoi T,et al.A comprehensive review of UDP-glucuronosyltransferase and esterases for drug development[J].Drug Metab Pharmacokinet,2015,30(1):30-51.
|
[1] | LI Yin, GU Hongfeng, ZOU Yi, WANG Shuping, XU Yungen. Research progress of mono-(ADP-ribosyl) transferase family and their inhibitors in tumor therapy[J]. Journal of China Pharmaceutical University, 2021, 52(6): 643-652. DOI: 10.11665/j.issn.1000-5048.20210601 |
[2] | SUN Chenkai, CHEN Xin, CHENG Hao, ZHANG Xiangze, YANG Xiaoyu, ZHOU Jianping, DING Yang. Advances of research on oxygen-enhancing nano-delivery system for photodynamic therapy[J]. Journal of China Pharmaceutical University, 2021, 52(4): 387-397. DOI: 10.11665/j.issn.1000-5048.20210401 |
[3] | FENG Yang, XU Xiao, MO Ran. Advances in lymphatic targeted drug delivery system for treatment of tumor metastasis[J]. Journal of China Pharmaceutical University, 2020, 51(4): 425-432. DOI: 10.11665/j.issn.1000-5048.20200406 |
[4] | TANG Keqin, LIN Huaqing, LI Shuhong, DONG Lixin, LU Bohong, JIANG Hong. Advances in tumor targeted nanocrystals[J]. Journal of China Pharmaceutical University, 2020, 51(4): 418-424. DOI: 10.11665/j.issn.1000-5048.20200405 |
[5] | CHEN Ye, YIN Jun, YAO Wenbing, GAO Xiangdong. Advances of DNA-based nanomaterials in tumor therapy[J]. Journal of China Pharmaceutical University, 2020, 51(4): 406-417. DOI: 10.11665/j.issn.1000-5048.20200404 |
[6] | XU Xiangting, WANG Wei. Advances of functionalized carbon nanotubes in diagnosis and treatment of tumor[J]. Journal of China Pharmaceutical University, 2018, 49(2): 165-172. DOI: 10.11665/j.issn.1000-5048.20180205 |
[7] | CAI Han, LIU Yanhong, YIN Tingjie, ZHOU Jianping, HUO Meirong. Advances in the targeted therapy of tumor-associated fibroblasts[J]. Journal of China Pharmaceutical University, 2018, 49(1): 20-25. DOI: 10.11665/j.issn.1000-5048.20180103 |
[8] | WANG Letian, WANG Jinglin, LIU Hongwu, GE Ying, LI Yuyan, XU Qingxiang. Process in targeted contrast agents for cancer imaging[J]. Journal of China Pharmaceutical University, 2017, 48(6): 635-645. DOI: 10.11665/j.issn.1000-5048.20170602 |
[9] | DONG Hong, WU Ruixue, LIU Jiaqi, HUANG Qing, ZHOU Ya, HU Yiqiao. Advances in cancer photodynamic therapy[J]. Journal of China Pharmaceutical University, 2016, 47(4): 377-387. DOI: 10.11665/j.issn.1000-5048.20160401 |
[10] | HUANG Shaoliang, ZHAO Li, GUO Qinglong, WU Yulin. Advances of Hedgehog pathway in tumor resistance[J]. Journal of China Pharmaceutical University, 2016, 47(3): 259-266. DOI: 10.11665/j.issn.1000-5048.20160302 |