Citation: | SUN Tingzhe. Mathematical modeling of the synergy between hyperthermia and radiotherapy in tumor treatment based on p53 signaling network[J]. Journal of China Pharmaceutical University, 2021, 52(3): 361-370. DOI: 10.11665/j.issn.1000-5048.20210314 |
[1] |
. Proc Natl Acad Sci U S A,1957,43(9):804-811.
|
[2] |
Harper CV,Woodcock DJ,Lam C,et al. Temperature regulates NF-κB dynamics and function through timing of A20 transcription[J]. Proc Natl Acad Sci U S A,2018,115(22):E5243-E5249.
|
[3] |
Jentsch M,Snyder P,Sheng CB,et al. p53 dynamics in single cells are temperature-sensitive[J]. Sci Rep,2020,10(1):1481.
|
[4] |
Batchelor E,Loewer A. Recent progress and open challenges in modeling p53 dynamics in single cells[J]. Curr Opin Syst Biol,2017,3:54-59.
|
[5] |
Bieging KT,Mello SS,Attardi LD. Unravelling mechanisms of p53-mediated tumour suppression[J]. Nat Rev Cancer,2014,14(5):359-370.
|
[6] |
Wu X,Bayle JH,Olson D,et al. The p53-mdm-2 autoregulatory feedback loop[J]. Genes Dev,1993,7(7a):1126-1132.
|
[7] |
Batchelor E,Mock CS,Bhan I,et al. Recurrent initiation:a mechanism for triggering p53 pulses in response to DNA damage[J]. Mol Cell,2008,30(3):277-289.
|
[8] |
Marcel V,van Long FN,Diaz JJ. 40 years of research put p53 in translation[J]. Cancers,2018,10(5):152.
|
[9] |
Tang QS,Su ZY,Gu W,et al. Mutant p53 on the path to metastasis[J]. Trends Cancer,2020,6(1):62-73.
|
[10] |
Gurpinar E,Vousden KH. Hitting cancers'' weak spots:vulnerabilities imposed by p53 mutation[J]. Trends Cell Biol,2015,25(8):486-495.
|
[11] |
Sund-Levander M,Forsberg C,Wahren LK. Normal oral,rectal,tympanic and axillary body temperature in adult men and women:a systematic literature review[J]. Scand J Caring Sci,2002,16(2):122-128.
|
[12] |
Byrne C,Lim CL. The ingestible telemetric body core temperature sensor:a review of validity and exercise applications[J]. Br J Sports Med,2007,41(3):126-133.
|
[13] |
Guilherme L,Kalil J. Rheumatic fever and rheumatic heart disease:cellular mechanisms leading autoimmune reactivity and disease[J]. J Clin Immunol,2010,30(1):17-23.
|
[14] |
ó’Fágáin C. Enzyme stabilization—recent experimental progress[J]. Enzym Microb Technol,2003,33(2/3):137-149.
|
[15] |
Pelaez F,Manuchehrabadi N,Roy P,et al. Biomaterial scaffolds for non-invasive focal hyperthermia as a potential tool to ablate metastatic cancer cells[J]. Biomaterials,2018,166:27-37.
|
[16] |
Sun TZ,Cui J. A plausible model for bimodal p53 switch in DNA damage response[J]. FEBS Lett,2014,588(5):815-821.
|
[17] |
Tanaka T,Halicka HD,Traganos F,et al. Induction of ATM activation,histone H2AX phosphorylation and apoptosis by etoposide:relation to cell cycle phase[J]. Cell Cycle,2007,6(3):371-376.
|
[18] |
Hirai Y,Hayashi T,Kubo Y,et al. X-irradiation induces up-regulation of ATM gene expression in wild-type lymphoblastoid cell lines,but not in their heterozygous or homozygous Ataxia-telangiectasia counterparts[J]. Jpn J Cancer Res,2001,92(6):710-717.
|
[19] |
Hafner A,Bulyk ML,Jambhekar A,et al. The multiple mechanisms that regulate p53 activity and cell fate[J]. Nat Rev Mol Cell Biol,2019,20(4):199-210.
|
[20] |
Walerych D,Olszewski MB,Gutkowska M,et al. Hsp70 molecular chaperones are required to support p53 tumor suppressor activity under stress conditions[J]. Oncogene,2009,28(48):4284-4294.
|
[21] |
Arrhenius S. über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch S?uren[J]. Z Physik Chem,1889,4:226-248.
|
[22] |
Gajjar M,Candeias MM,Malbert-Colas L,et al. The p53 mRNA-Mdm2 interaction controls Mdm2 nuclear trafficking and is required for p53 activation following DNA damage[J]. Cancer Cell,2012,21(1):25-35.
|
[23] |
Chatterjee A,Vlachos DG,Katsoulakis MA. Binomial distribution based tau-leap accelerated stochastic simulation[J]. J Chem Phys,2005,122(2):024112.
|
[24] |
Foucquier J,Guedj M. Analysis of drug combinations:current methodological landscape[J]. Pharmacol Res Perspect,2015,3(3):
|
[25] |
Hsing A,Faller DV,Vaziri C. DNA-damaging aryl hydrocarbons induce Mdm2 expression via p53-independent post-transcriptional mechanisms[J]. J Biol Chem,2000,275(34):26024-26031.
|
[26] |
Ju J,Schmitz JC,Song B,et al. Regulation of p53 expression in response to 5-fluorouracil in human cancer RKO cells[J]. Clin Cancer Res,2007,13(14):4245-4251.
|
[27] |
Mayo LD,Dixon JE,Durden DL,et al. PTEN protects p53 from Mdm2 and sensitizes cancer cells to chemotherapy[J]. J Biol Chem,2002,277(7):5484-5489.
|
[28] |
Rossi M,Demidov ON,Anderson CW,et al. Induction of PPM1D following DNA-damaging treatments through a conserved p53 response element coincides with a shift in the use of transcription initiation sites[J]. Nucleic Acids Res,2008,36(22):7168-7180.
|
[29] |
Ma L,Wagner J,Rice JJ,et al. A plausible model for the digital response of p53 to DNA damage[J]. Proc Natl Acad Sci U S A,2005,102(40):14266-14271.
|
[30] |
Vilenchik MM,Knudson AG. Endogenous DNA double-strand breaks:production,fidelity of repair,and induction of cancer[J]. Proc Natl Acad Sci U S A,2003,100(22):12871-12876.
|
[31] |
M?nke G,Cristiano E,Finzel A,et al. Excitability in the p53 network mediates robust signaling with tunable activation thresholds in single cells[J]. Sci Rep,2017,7:46571.
|
[32] |
Harton MD,Koh WS,Bunker AD,et al. p53 pulse modulation differentially regulates target gene promoters to regulate cell fate decisions[J]. Mol Syst Biol,2019,15(9):
|
[33] |
Chen X,Chen J,Gan ST,et al. DNA damage strength modulates a bimodal switch of p53 dynamics for cell-fate control[J]. BMC Biol,2013,11:73.
|
[34] |
Yang RZ,Huang B,Zhu YT,et al. Cell type-dependent bimodal p53 activation engenders a dynamic mechanism of chemoresistance[J]. Sci Adv,2018,4(12):
|
[35] |
Purvis JE,Karhohs KW,Mock C,et al. p53 dynamics control cell fate[J]. Science,2012,336(6087):1440-1444.
|
[36] |
Soares PI,Ferreira IM,Igreja RA,et al. Application of hyperthermia for cancer treatment:recent patents review[J]. Recent Pat Anticancer Drug Discov,2012,7(1):64-73.
|
[37] |
Ohnstad HO,Castro R,Sun JC,et al. Correlation of TP53 and MDM2 genotypes with response to therapy in sarcoma[J]. Cancer,2013,119(5):1013-1022.
|
[38] |
Keizer EM,Bastian B,Smith RW,et al. Extending the linear-noise approximation to biochemical systems influenced by intrinsic noise and slow lognormally distributed extrinsic noise[J]. Phys Rev E,2019,99(5-1):052417.
|
[1] | REN Yanwei, LI Qiyi, HE Bing, LI Haoyu, ZHAO Li, LI Yuyan. Research progress of enzyme-instructed self-assembly molecules for tumor therapy and imaging[J]. Journal of China Pharmaceutical University, 2023, 54(4): 431-442. DOI: 10.11665/j.issn.1000-5048.2023020602 |
[2] | BAI Yan, GUO Xinyao, QIN Qiliang, YAN Fang. Advances in research on mechanism of lactate dehydrogenase B in tumors[J]. Journal of China Pharmaceutical University, 2023, 54(2): 172-179. DOI: 10.11665/j.issn.1000-5048.20221112001 |
[3] | XING Xuyang, WANG Xiaochun, HE Wei. Advances in research on tumor immunotherapy and its drug development[J]. Journal of China Pharmaceutical University, 2021, 52(1): 10-19. DOI: 10.11665/j.issn.1000-5048.20210102 |
[4] | LI Fang, XIN Junbo, SHI Qin, MAO Chengqiong. Advances in near infrared photoimmunotherapy of tumor[J]. Journal of China Pharmaceutical University, 2020, 51(6): 664-674. DOI: 10.11665/j.issn.1000-5048.20200604 |
[5] | TANG Keqin, LIN Huaqing, LI Shuhong, DONG Lixin, LU Bohong, JIANG Hong. Advances in tumor targeted nanocrystals[J]. Journal of China Pharmaceutical University, 2020, 51(4): 418-424. DOI: 10.11665/j.issn.1000-5048.20200405 |
[6] | CHEN Ye, YIN Jun, YAO Wenbing, GAO Xiangdong. Advances of DNA-based nanomaterials in tumor therapy[J]. Journal of China Pharmaceutical University, 2020, 51(4): 406-417. DOI: 10.11665/j.issn.1000-5048.20200404 |
[7] | GAO Qi, HAN Yue, XU Wei, XU Jingjing, WANG Min, ZHANG Juan. Combination of a single-chain variable fragment JZC00 with 2-deoxyglucose inhibited tumor growth in murine models[J]. Journal of China Pharmaceutical University, 2020, 51(2): 206-212. DOI: 10.11665/j.issn.1000-5048.20200212 |
[8] | WEN Liujing, WANG Chen. Application and research progress of pharmaco-metabonomics in the diagnosis and treatment of tumor[J]. Journal of China Pharmaceutical University, 2015, 46(4): 400-405. DOI: 10.11665/j.issn.1000-5048.20150403 |
[9] | SUN Zhan-yi, CAI Hui, HUANG Zhi-hua, SHI Lei, CHEN Yong-xiang, LI Yan-mei. Advances of glycopeptide-associated tumor vaccines[J]. Journal of China Pharmaceutical University, 2012, 43(2): 97-106. |
[10] | YANG Li, YOU Qi-dong, YANG Yong, GUO Qing-long. Research advances in wogonin′s anti-tumor effects[J]. Journal of China Pharmaceutical University, 2009, 40(6): 576-579. |
1. |
胡渊,傅庆荣. Gadd45β介导热疗促进肾癌细胞凋亡的机制研究. 医药前沿. 2025(17): 1-5 .
![]() | |
2. |
王丹,姜頔,宋越,陆晗笑,刘丽娜. 老年子宫内膜癌组织中miR-30a及p53、S100蛋白表达与临床病理特征、术后复发转移的关系. 中国老年学杂志. 2024(13): 3088-3092 .
![]() | |
3. |
潘熠,林谦,魏兰,张立晶,李蒙. 益气泻肺汤加减方对阿霉素所致心脏毒性干预作用的机制研究. 中西医结合心脑血管病杂志. 2024(21): 3850-3858 .
![]() | |
4. |
侯宇芯,任晋宏,姚红,马慧莱,薛慧清. 基于网络药理学探讨黄芪抗阿霉素心肌细胞毒性的作用机制. 山西大学学报(自然科学版). 2023(03): 708-720 .
![]() | |
5. |
徐茜,寇兰俊,梁晋普,林换森,黄雪菲,吴亚男. 基于网络药理学探讨益气泻肺汤治疗慢性心力衰竭的作用机制. 湖南中医杂志. 2023(08): 150-157 .
![]() | |
6. |
玉苏普瓦吉木·阿力木江,艾孜提艾力·艾海提,木合布力·阿布力孜,杨争,赛力克阿拉·阿里汗,刘正叶. 新型三氟甲基查耳酮类衍生物的设计、合成及体外抗宫颈癌活性. 中国药科大学学报. 2022(06): 674-684 .
![]() |