Citation: | LIN Mingde, HAN Weijie, XU Xiaohe, DAI Xiaowen, CHEN Yadong. Activity prediction of human cytochrome P450 inhibitors based on multiple deep learning and machine learning methods[J]. Journal of China Pharmaceutical University, 2023, 54(3): 333-343. DOI: 10.11665/j.issn.1000-5048.2023033103 |
[1] |
Evans WE, Relling MV. Pharmacogenomics: translating functional genomics into rational therapeutics[J]. Science, 1999, 286(5439): 487-491.
|
[2] |
Feiters MC, Rowan AE, Nolte R. ChemInform abstract: from simple to supramolecular cytochrome P450 mimics[J]. Chem Soc Rev, 2000, 29(6): 375-384.
|
[3] |
du Souich P. In human therapy, is the drug-drug interaction or the adverse drug reaction the issue[J]? J Can De Pharmacol Clin, 2001, 8(3): 153-161.
|
[4] |
Williams JA, Hyland R, Jones BC, et al. Drug-drug interactions for UDP-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (AUCi/AUC) ratios[J]. Drug MeTable Dispos, 2004, 32(11): 1201-1208.
|
[5] |
Khakar PS. Two-dimensional (2D) in silico models for absorption, distribution, metabolism, excretion and toxicity (ADME/T) in drug discovery[J]. Curr Top Med Chem, 2010, 10(1): 116-126.
|
[6] |
Dai H, Xu Q, Xiong Y, et al. Improved prediction of Michaelis constants in CYP450-mediated reactions by resilient back propagation algorithm[J]. Curr Drug Metab, 2016, 17(7): 673-680.
|
[7] |
Kato H. Computational prediction of cytochrome P450 inhibition and induction[J]. Drug MeTable Pharmacokinet, 2020, 35(1): 30-44.
|
[8] |
Leach AG, Kidley NJ. Cytochrome P450 substrate recognition and binding[M]// Drug Metabolism Prediction. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA,2014: 103-132.
|
[9] |
Oostenbrink C. Structure-based methods for predicting the sites and products of metabolism[M]// Drug Metabolism Prediction. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA,2014: 243-264.
|
[10] |
Kirchmair J, Williamson MJ, Tyzack JD, et al. Computational prediction of metabolism: sites, products, SAR, P450 enzyme dynamics, and mechanisms[J]. J Chem Inf Model, 2012, 52(3): 617-648.
|
[11] |
Shan XQ, Wang XG, Li CD, et al. Prediction of CYP450 enzyme-substrate selectivity based on the network-based label space division method[J]. J Chem Inf Model, 2019, 59(11): 4577-4586.
|
[12] |
Xiong Y, Qiao YH, Kihara D, et al. Survey of machine learning techniques for prediction of the isoform specificity of cytochrome P450 substrates[J]. Curr Drug Metab, 2019, 20(3): 229-235.
|
[13] |
Tyzack JD, Hunt PA, Segall MD. Predicting regioselectivity and lability of cytochrome P450 metabolism using quantum mechanical simulations[J]. J Chem Inf Model, 2016, 56(11): 2180-2193.
|
[14] |
Gleeson MP, Davis AM, Chohan KK, et al. Generation of in-silico cytochrome P450 1A2, 2C9, 2C19, 2D6, and 3A4 inhibition QSAR models[J]. J Comput Aided Mol Des, 2007, 21(10/11): 559-573.
|
[15] |
Cheng FX, Yu Y, Shen J, et al. Classification of cytochrome P450 inhibitors and noninhibitors using combined classifiers[J]. J Chem Inf Model, 2011, 51(5): 996-1011.
|
[16] |
Pan XC, Chao L, Qu SJ, et al. An improved large-scale prediction model of CYP1A2 inhibitors by using combined fragment descriptors[J]. RSC Adv, 2015, 5(102): 84232-84237.
|
[17] |
Wu ZX, Lei TL, Shen C, et al. ADMET evaluation in drug discovery. 19. reliable prediction of human cytochrome P450 inhibition using artificial intelligence approaches[J]. J Chem Inf Model, 2019, 59(11): 4587-4601.
|
[18] |
Li X, Xu YJ, Lai LH, et al. Prediction of human cytochrome P450 inhibition using a multitask deep autoencoder neural network[J]. Mol Pharm, 2018, 15(10): 4336-4345.
|
[19] |
Inglese J, Auld DS, Jadhav A, et al. Quantitative high-throughput screening: a titration-based approach that efficiently identifies biological activities in large chemical libraries[J]. Proc Natl Acad Sci U S A, 2006, 103(31): 11473-11478.
|
[20] |
Zhao XW, Ma ZQ, Yin MH. Using support vector machine and evolutionary profiles to predict antifreeze protein sequences[J]. Int J Mol Sci, 2012, 13(2): 2196-2207.
|
[21] |
Hu LY, Huang MW, Ke SW, et al. The distance function effect on k-nearest neighbor classification for medical datasets[J]. Springerplus, 2016, 5(1): 1304.
|
[22] |
Tong WD, Hong HX, Fang H, et al. Decision forest: combining the predictions of multiple independent decision tree models[J]. J Chem Inf Comput Sci, 2003, 43(2): 525-531.
|
[23] |
Breiman L. Random Forests[J]. Mach Learn , 2001, 45: 5-32.
|
[24] |
Ke G, Meng Q, Finley T, et al. LightGBM: a highly efficient gradient Boosting decision tree[C]//
|
[25] |
Friedman JH. Greedy function approximation: a gradient Boosting machine[J]. Ann Statist, 2001, 29(5): 1189-1232.
|
[26] |
Chen TQ, Guestrin C. XGBoost: a scalable tree Boosting system[C]//
|
[27] |
Xing HJ, Liu WT. Robust AdaBoost based ensemble of one-class support vector machines[J]. Inf Fusion, 2020, 55: 45-58.
|
[28] |
Prokhorenkova L, Gusev G, Vorobev A, et al. CatBoost: unbiased Boosting with categorical features[C]//
|
[29] |
Connelly L. Logistic regression[J]. Med Surg Nurs, 2020, 29(5): 353-354.
|
[30] |
Geurts P, Ernst D, Wehenkel L. Extremely randomized trees[J]. Mach Learn, 2006, 63(1): 3-42.
|
[31] |
Moon T, Chi MH, Kim DH, et al. Quantitative structure-activity relationships (QSAR) study of flavonoid derivatives for inhibition of cytochrome P450 1A2[J]. Quant Struct Act Relatio, 2000, 19(3): 257-263.
|
[32] |
Powers DMW. Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation[J]. arXiv,2020:
|
[33] |
Vergara JR, Estévez PA. A review of feature selection methods based on mutual information[J]. Neural Comput Applic, 2014, 24(1): 175-186.
|
[34] |
Bachman P, Hjelm RD, Buchwalter W. Learning representations by maximizing mutual information across views[C]//
|
[35] |
Kwak N, Choi CH. Input feature selection by mutual information based on Parzen window[J]. IEEE Trans Pattern Anal Mach Intell, 2002, 24(12): 1667-1671.
|
[36] |
Cai CP, Guo PF, Zhou YD, et al. Deep learning-based prediction of drug-induced cardiotoxicity[J]. J Chem Inf Model, 2019, 59(3): 1073-1084.
|
[37] |
Xing GM, Liang L, Deng CL, et al. Activity prediction of small molecule inhibitors for antirheumatoid arthritis targets based on artificial intelligence[J]. ACS Comb Sci, 2020, 22(12): 873-886.
|
[38] |
Su BH, Tu YS, Lin C, et al. Rule-based prediction models of cytochrome P450 inhibition[J]. J Chem Inf Model, 2015, 55(7): 1426-1434.
|
[39] |
Sun HM, Veith H, Xia MH, et al. Predictive models for cytochrome P450 isozymes based on quantitative high throughput screening data[J]. J Chem Inf Model, 2011, 51(10): 2474-2481.
|
[1] | ZHANG Zhixing, DENG Hua, TANG Yun. Applications and challenges of artificial intelligence in the development of anticancer peptides[J]. Journal of China Pharmaceutical University, 2024, 55(3): 347-356. DOI: 10.11665/j.issn.1000-5048.2024040201 |
[2] | XU Qing, LYU Min, DENG Hongxiao, HU Chi, XIANG Ping, CHEN Hang. Advances in the application of machine learning in the identification and authentication of synthetic cannabinoids[J]. Journal of China Pharmaceutical University, 2024, 55(3): 316-325. DOI: 10.11665/j.issn.1000-5048.2023113003 |
[3] | DU Ke, RONG Danqi, LU Rui, ZHANG Xiaoya, ZHAO Hongping. Research on machine learning-based activity prediction models for KRAS inhibitors[J]. Journal of China Pharmaceutical University, 2024, 55(3): 306-315. DOI: 10.11665/j.issn.1000-5048.2024031102 |
[4] | PU Chengtao, GU Lingqian, CHEN Xingye, ZHANG Yanmin. Prediction of human intestinal absorption properties based on artificial intelligence[J]. Journal of China Pharmaceutical University, 2023, 54(3): 355-362. DOI: 10.11665/j.issn.1000-5048.2023032102 |
[5] | YAN Yingchao, ZENG Chen, CHEN Yadong. Virtual screening of potential ATR kinase inhibitors based on machine learning and molecular docking[J]. Journal of China Pharmaceutical University, 2023, 54(3): 323-332. DOI: 10.11665/j.issn.1000-5048.2023022802 |
[6] | XUE Feng, FENG Shuo, LI Jing. Application and prospect of artificial intelligence in antimicrobial peptides screening[J]. Journal of China Pharmaceutical University, 2023, 54(3): 314-322. DOI: 10.11665/j.issn.1000-5048.2023030901 |
[7] | RONG Danqi, WANG Qian, TANG Li, SI Wanyu, ZHAO Hongping. Research progress of feature-based deep learning for predicting compound-protein interaction[J]. Journal of China Pharmaceutical University, 2023, 54(3): 305-313. DOI: 10.11665/j.issn.1000-5048.2023040304 |
[8] | FU Mingyu, ZHU Yiyang, WU Chunyong, HOU Fengzhen, GUAN Yuan. Prediction of plasma protein binding rate based on machine learning[J]. Journal of China Pharmaceutical University, 2021, 52(6): 699-706. DOI: 10.11665/j.issn.1000-5048.20210607 |
[9] | FAN Wenxiang, LI Xiaomin, XU Chi. Effects of S-oxiracetam on learning and memory impairment in mice[J]. Journal of China Pharmaceutical University, 2021, 52(1): 77-83. DOI: 10.11665/j.issn.1000-5048.20210111 |
[10] | CHEN Yao, WU Hong, GE Weihong, ZHANG Haixia, LIAO Jun. Research on entity relation extraction of Chinese adverse drug reaction reports based on deep learning method[J]. Journal of China Pharmaceutical University, 2019, 50(6): 753-759. DOI: 10.11665/j.issn.1000-5048.20190617 |
1. |
王晓雷,王钱庆,王鲜芳. 基于Flask数据可视化的网页端显示方法研究. 无线互联科技. 2024(15): 10-13+20 .
![]() |