Citation: | KONG Ying, YE Hui, SHAO Chang, HAO Haiping. Applications of genetic code expansion in the study of lysine acylation[J]. Journal of China Pharmaceutical University, 2023, 54(5): 519-526. DOI: 10.11665/j.issn.1000-5048.2023041401 |
[1] |
Conibear AC. Deciphering protein post-translational modifications using chemical biology tools[J]. Nat Rev Chem, 2020, 4(12): 674-695.
|
[2] |
Macek B, Forchhammer K, Hardouin J, et al. Protein post-translational modifications in bacteria[J]. Nat Rev Microbiol, 2019, 17(11): 651-664.
|
[3] |
Barber KW, Rinehart J. The ABCs of PTMs[J]. Nat Chem Biol, 2018, 14(3): 188-192.
|
[4] |
Millar AH, Heazlewood JL, Giglione C, et al. The scope, functions, and dynamics of posttranslational protein modifications[J]. Annu Rev Plant Biol, 2019, 70: 119-151.
|
[5] |
Millán-Zambrano G, Burton A, Bannister AJ, et al. Histone post-translational modifications - cause and consequence of genome function[J]. Nat Rev Genet, 2022, 23(9): 563-580.
|
[6] |
Moen JM, Mohler K, Rogulina S, et al. Enhanced access to the human phosphoproteome with genetically encoded phosphothreonine[J]. Nat Commun, 2022, 13(1): 7226.
|
[7] |
Yang NF, Wang YX, Tian Q, et al. Blockage of PPARγ T166 phosphorylation enhances the inducibility of beige adipocytes and improves metabolic dysfunctions[J]. Cell Death Differ, 2023, 30(3): 766-778.
|
[8] |
Aebersold R, Agar JN, Amster IJ, et al. How many human proteoforms are there[J]? Nat Chem Biol, 2018, 14(3): 206-214.
|
[9] |
Tan MJ, Luo H, Lee S, et al. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification[J]. Cell, 2011, 146(6): 1016-1028.
|
[10] |
Yan KZ, Rousseau J, Machol K, et al. Deficient histone H3 propionylation by BRPF1-KAT6 complexes in neurodevelopmental disorders and cancer[J]. Sci Adv, 2020, 6(4):
|
[11] |
Wang HL, Chen Y, Wang YQ, et al. Sirtuin5 protects colorectal cancer from DNA damage by keeping nucleotide availability[J]. Nat Commun, 2022, 13(1): 6121.
|
[12] |
Takada S, Maekawa S, Furihata T, et al. Succinyl-CoA-based energy metabolism dysfunction in chronic heart failure[J]. Proc Natl Acad Sci U S A, 2022, 119(41):
|
[13] |
Bao XC, Liu Z, Zhang W, et al. Glutarylation of histone H4 lysine 91 regulates chromatin dynamics[J]. Mol Cell, 2019, 76(4): 660-675.e9.
|
[14] |
Huang H, Zhang D, Weng YJ, et al. The regulatory enzymes and protein substrates for the lysine β-hydroxybutyrylation pathway[J]. Sci Adv, 2021, 7(9):
|
[15] |
Liao L, He Y, Li SJ, et al. Lysine 2-hydroxyisobutyrylation of NAT10 promotes cancer metastasis in an ac4C-dependent manner[J]. Cell Res, 2023, 33(5): 355-371.
|
[16] |
Huang H, Zhang D, Wang Y, et al. Lysine benzoylation is a histone mark regulated by SIRT2[J]. Nat Commun, 2018, 9(1): 3374.
|
[17] |
Zhang D, Tang ZY, Huang H, et al. Metabolic regulation of gene expression by histone lactylation[J]. Nature, 2019, 574(7779): 575-580.
|
[18] |
Huang DL, Montigny C, Zheng Y, et al. Chemical synthesis of native S-palmitoylated membrane proteins through removable-backbone-modification-assisted Ser/thr ligation[J]. Angew Chem Int Ed, 2020, 59(13): 5178-5184.
|
[19] |
Xie YS, Du SB, Liu ZY, et al. Chemical biology tools for protein lysine acylation[J]. Angew Chem Int Ed, 2022, 61(21):
|
[20] |
Fischer EC, Hashimoto K, Zhang Y, et al. New codons for efficient production of unnatural proteins in a semisynthetic organism[J]. Nat Chem Biol, 2020, 16(5): 570-576.
|
[21] |
Sun W, Wang NX, Liu HJ, et al. Genetically encoded chemical crosslinking of RNA in vivo[J]. Nat Chem, 2023, 15(1): 21-32.
|
[22] |
Yang ZJ, Yan C, Ma JQ, et al. Lactylome analysis suggests lactylation-dependent mechanisms of metabolic adaptation in hepatocellular carcinoma[J]. Nat Metab, 2023, 5(1): 61-79.
|
[23] |
Wan N, Wang N, Yu SQ, et al. Cyclic immonium ion of lactyllysine reveals widespread lactylation in the human proteome[J]. Nat Methods, 2022, 19(7): 854-864.
|
[24] |
Venkat S, Chen H, Stahman A, et al. Characterizing lysine acetylation of isocitrate dehydrogenase in Escherichia coli[J]. J Mol Biol, 2018, 430(13): 1901-1911.
|
[25] |
Chen G, Luo Y, Warncke K, et al. Acetylation regulates ribonucleotide reductase activity and cancer cell growth[J]. Nat Commun, 2019, 10(1): 3213.
|
[26] |
Parsa S, Ortega-Molina A, Ying HY, et al. The serine hydroxymethyltransferase-2 (SHMT2) initiates lymphoma development through epigenetic tumor suppressor silencing[J]. Nat Cancer, 2020, 1: 653-664.
|
[27] |
Wei Z, Song JL, Wang GH, et al. Deacetylation of serine hydroxymethyl-transferase 2 by SIRT3 promotes colorectal carcinogenesis[J]. Nat Commun, 2018, 9(1): 4468.
|
[28] |
Wang C, Wan XY, Yu T, et al. Acetylation stabilizes phosphoglycerate dehydrogenase by disrupting the interaction of E3 ligase RNF5 to promote breast tumorigenesis[J]. Cell Rep, 2020, 32(6): 108021.
|
[29] |
Zhang SH, Chen QH, Liu QX, et al. Hippo signaling suppresses cell ploidy and tumorigenesis through Skp2[J]. Cancer Cell, 2017, 31(5): 669-684.e7.
|
[30] |
Knyphausen P, Kuhlmann N, de Boor S, et al. Lysine-acetylation as a fundamental regulator of Ran function: implications for signaling of proteins of the Ras-superfamily[J]. Small GTPases, 2015, 6(4): 189-195.
|
[31] |
Thao S, Chen CS, Zhu H, et al. Nε-lysine acetylation of a bacterial transcription factor inhibits its DNA-binding activity[J]. PLoS One, 2010, 5(12):
|
[32] |
Boyes J, Byfield P, Nakatani Y, et al. Regulation of activity of the transcription factor GATA-1 by acetylation[J]. Nature, 1998, 396(6711): 594-598.
|
[33] |
Huang YP, Zhai GJ, Li YN, et al. Deciphering the interactome of histone marks in living cells via genetic code expansion combined with proximity labeling[J]. Anal Chem, 2022, 94(30): 10705-10714.
|
[34] |
Zhang F, Zhou Q, Yang GW, et al. A genetically encoded 19F NMR probe for lysine acetylation[J]. Chem Commun, 2018, 54(31): 3879-3882.
|
[35] |
Xiong H, Reynolds NM, Fan CG, et al. Dual genetic encoding of acetyl-lysine and non-deacetylatable thioacetyl-lysine mediated by flexizyme[J]. Angew Chem Int Ed, 2016, 55(12): 4083-4086.
|
[36] |
Zhang ZJ, Pedicord VA, Peng T, et al. Site-specific acylation of a bacterial virulence regulator attenuates infection[J]. Nat Chem Biol, 2020, 16(1): 95-103.
|
[37] |
Qin FF, Li BY, Wang H, et al. Linking chromatin acylation mark-defined proteome and genome in living cells[J]. Cell, 2023, 186(5): 1066-1085.e36.
|
[38] |
Sudhamalla B, Dey D, Breski M, et al. Site-specific azide-acetyllysine photochemistry on epigenetic readers for interactome profiling[J]. Chem Sci, 2017, 8(6): 4250-4256.
|
[39] |
Lopez JE, Haynes SE, Majmudar JD, et al. HDAC8 substrates identified by genetically encoded active site photocrosslinking[J]. J Am Chem Soc, 2017, 139(45): 16222-16227.
|
[40] |
Wilkins BJ, Hahn LE, Heitmüller S, et al. Genetically encoding lysine modifications on histone H4[J]. ACS Chem Biol, 2015, 10(4): 939-944.
|
[41] |
Cao L, Liu J, Ghelichkhani F, et al. Genetic incorporation of ?-N-benzoyllysine by engineering Methanomethylophilus alvus pyrrolysyl-tRNA synthetase[J]. ChemBioChem, 2021, 22(15): 2530-2534.
|
[42] |
Venkat S, Sturges J, Stahman A, et al. Genetically incorporating two distinct post-translational modifications into one protein simultaneously[J]. ACS Synth Biol, 2018, 7(2): 689-695.
|
[1] | MENG Yue, YAO Siyuan, GAO Xiangdong, CHEN Song. Effects and mechanisms of SNP-9 on Aβ25-35-induced damage in bEnd.3 cells[J]. Journal of China Pharmaceutical University, 2022, 53(3): 333-339. DOI: 10.11665/j.issn.1000-5048.20220311 |
[2] | CHEN Yingjie, GAO Xiangdong, CHEN Song. Effects and mechanisms of FGF21 on neuronal damage induced by rotenone[J]. Journal of China Pharmaceutical University, 2020, 51(6): 718-723. DOI: 10.11665/j.issn.1000-5048.20200611 |
[3] | LI Wei, XU Xuefen. Mechanism of resveratrol induced apoptosis on human prostate cancer cell line DU145[J]. Journal of China Pharmaceutical University, 2018, 49(6): 711-717. DOI: 10.11665/j.issn.1000-5048.20180612 |
[4] | FENG Quanfu, BI Lei, YAN Xiaojing, YANG Ye, CHEN Weiping. Inhibition of tetramethypyrazine on proliferation of HepG2 cells and its effects on the pathway of mitochondrial apoptosis[J]. Journal of China Pharmaceutical University, 2015, 46(3): 350-354. DOI: 10.11665/j.issn.1000-5048.20150315 |
[5] | QI Cuiling, ZHOU Xinlei, YE Jie, YANG Yang, ZHANG Qianqian, LI Jiangchao, WANG Lijing. Andrographolide induces Tb cell apoptosis by activating Caspase-3/PARP[J]. Journal of China Pharmaceutical University, 2013, 44(6): 559-562. DOI: 10.11665/j.issn.1000-5048.20130614 |
[6] | REN Jie, XIN Wenqun, CHEN Xin, HU Kun. Apoptosis induced by podophyllotoxin derivative OAMDP in HeLa cells[J]. Journal of China Pharmaceutical University, 2013, 44(3): 267-271. DOI: 10.11665/j.issn.1000-5048.20130316 |
[7] | LEI Hui, TAN Jiani, LI Shaoping, LI Haitao, JI Hui. Turmeric oil induces human hepatoma cell apoptosis via mitochondrial pathway[J]. Journal of China Pharmaceutical University, 2013, 44(3): 263-266. DOI: 10.11665/j.issn.1000-5048.20130315 |
[8] | Effects of panaxatriol saponins on the differentiation and apoptosis of MC3T3-E1 cells[J]. Journal of China Pharmaceutical University, 2010, 41(3): 273-377. |
[9] | Mechanism of TNF Related Apoptosis Inducing Ligand Inducing Apoptosis and Its Pharmaceutical Exploitation[J]. Journal of China Pharmaceutical University, 2004, (4): 91-94. |
[10] | Effect of Nerve Regeneration Factor on Apoptosis Cells in the Newborn Rat Spinal Cord[J]. Journal of China Pharmaceutical University, 2002, (1): 60-63. |