Citation: | QI Danhui, SHI Xiaoyu, LIU Xinyong, et al. Recent advances in bioactivity evaluation methods of uric acid-lowering compounds[J]. J China Pharm Univ, 2024, 55(2): 167 − 180. DOI: 10.11665/j.issn.1000-5048.2023080103 |
Hyperuricemia is a metabolic disease caused by elevated uric acid in the body, and is closely related to the increased risk of cardiovascular disease, metabolic disorders, and renal complications. In the development process of uric acid-lowering drugs, activity evaluation is a crucial step. At present, the activity screening methods of uric acid-lowering drugs can be roughly divided into two categories: in vitro and in vivo. In vitro screening is mainly for such targets as xanthine oxidase, urate transporters, and purine nucleoside phosphorylase, etc.; while in vivo screening is achieved by rodent, poultry and organoid models. In this article, the activity evaluation methods for uric acid-lowering compounds are comprehensively summarized both in vitro and in vivo, aiming to provide some insight for the development of uric acid-lowering drugs.
[1] |
Dalbeth N, Gosling AL, Gaffo A, et al. Gout[J]. Lancet, 2021, 397(10287): 1843-1855. doi: 10.1016/S0140-6736(21)00569-9
|
[2] |
Danve A, Sehra ST, Neogi T. Role of diet in hyperuricemia and gout[J]. Best Pract Res Clin Rheumatol, 2021, 35(4): 101723. doi: 10.1016/j.berh.2021.101723
|
[3] |
Sattui SE, Gaffo AL. Treatment of hyperuricemia in gout: current therapeutic options, latest developments and clinical implications[J]. Ther Adv Musculoskelet Dis, 2016, 8(4): 145-159. doi: 10.1177/1759720X16646703
|
[4] |
Nian YL, You CG. Susceptibility genes of hyperuricemia and gout[J]. Hereditas, 2022, 159(1): 30. doi: 10.1186/s41065-022-00243-y
|
[5] |
Yin H, Liu N, Chen J. The role of the intestine in the development of hyperuricemia[J]. Front Immunol, 2022, 13: 845684. doi: 10.3389/fimmu.2022.845684
|
[6] |
Mackenzie IS, Ford I, Nuki G, et al. Long-term cardiovascular safety of febuxostat compared with allopurinol in patients with gout(FAST): a multicentre, prospective, randomised, open-label, non-inferiority trial[J]. Lancet, 2020, 396(10264): 1745-1757. doi: 10.1016/S0140-6736(20)32234-0
|
[7] |
Yang Y, Yan D, Cheng H, et al. Discovery of novel 1, 2, 4-triazole derivatives as xanthine oxidoreductase inhibitors with hypouricemic effects[J]. Bioorg Chem, 2022, 129: 106162. doi: 10.1016/j.bioorg.2022.106162
|
[8] |
Xin Y, Zeng Z, Chen G. Advances in research of gout and its therapeutic drugs[J]. Chin J Med Chem (中国药物化学杂志), 2012, 22(5): 416-423.
|
[9] |
Ao GZ, Zhou MZ, Li YY, et al. Discovery of novel curcumin derivatives targeting xanthine oxidase and urate transporter 1 as anti-hyperuricemic agents[J]. Bioorg Med Chem, 2017, 25(1): 166-174. doi: 10.1016/j.bmc.2016.10.022
|
[10] |
Zeng JX, Wang J, Zhang SW, et al. Antigout effects of Plantago asiatica: xanthine oxidase inhibitory activities assessed by electrochemical biosensing method[J]. Evid Based Complement Alternat Med, 2018, 2018: 1364617.
|
[11] |
Zhu SY, Zhou YD, Liu QS, et al. Establishment and application of a high-throughput screening assay for xanthine oxidase inhibitor in vitro[J]. Chin Pharm J (中国药学杂志), 2007, 42(3): 187-190.
|
[12] |
Yan ZX, Yin F, Li XC, et al. Establishment of a screening system for xanthine oxidase (XOD) inhibitors[J]. Chin Pharmacol Bull (中国药理学通报), 2019, 35(10): 1471-1477.
|
[13] |
Li X, Jiang N, Yang Y, et al. Experimental study of the anti-hyperuricemic effect of compound CC18013[J]. Chin J New Drugs(中国新药杂志), 2021, 30(16): 1460-1465.
|
[14] |
Wang C, Xing X. Research progress and prospects of xanthine oxidase[J]. Guangxi Sci (广西科学), 2017, 24(1): 15-24.
|
[15] |
Xie T, Qin Z, Zhou R, et al. Establishment of double targets of high throughput screening model for xanthine oxidase inhibitors and superoxide anion scavengers[J]. Acta Pharm Sin (药学学报), 2015, 50(4): 447-452.
|
[16] |
Zhang B, Duan Y, Yang Y, et al. Design, synthesis, and biological evaluation of N-(3-cyano-1H-indol-5/6-yl)-6-oxo-1, 6-dihydropyrimidine-4-carboxamides and 5-(6-oxo-1, 6-dihydropyrimidin-2-yl)-1H-indole-3-carbonitriles as novel xanthine oxidase inhibitors[J]. Eur J Med Chem, 2022, 227: 113928. doi: 10.1016/j.ejmech.2021.113928
|
[17] |
Hou C, Liu D, Wang M, et al. Novel xanthine oxidase-based cell model using HK-2 cell for screening antihyperuricemic functional compounds[J]. Free Radic Biol Med, 2019, 136: 135-145. doi: 10.1016/j.freeradbiomed.2019.04.007
|
[18] |
Hou C, Sha W, Li Y, et al. A modified xanthine oxidase cell model for screening of antihyperuricemic functional compounds[J]. Food Funct, 2022, 13(20): 10546-10557. doi: 10.1039/D2FO00297C
|
[19] |
Bantia S, Parker C, Upshaw R, et al. Potent orally bioavailable purine nucleoside phosphorylase inhibitor BCX-4208 induces apoptosis in B- and T-lymphocytes--a novel treatment approach for autoimmune diseases, organ transplantation and hematologic malignancies[J]. Int Immunopharmacol, 2010, 10 (7): 784-790.
|
[20] |
Yang X, Huang Q, Tian Z, et al. Establishment of a novel hyperuricemia animal model using mice and assessment of hyporuricemia action of PNP inhibitor ulodesine[J]. Chin Pharmacol Bull (中国药理学通报), 2017, 33(6): 883-886.
|
[21] |
Enomoto A, Kimura H, Chairoungdua A, et al. Molecular identification of a renal urate anion exchanger that regulates blood urate levels[J]. Nature, 2002, 417(6887): 447-452. doi: 10.1038/nature742
|
[22] |
Jansen TL, Tanja G, Matthijs J. A historical journey of searching for uricosuric drugs[J]. Clin Rheumatol, 2022, 41(1): 297-305. doi: 10.1007/s10067-021-05930-1
|
[23] |
Pérez-Ruiz F, Jansen T, Tausche AK, et al. Efficacy and safety of lesinurad for the treatment of hyperuricemia in gout[J]. Drugs Context, 2019, 8: 212581.
|
[24] |
Uda J, Kobashi S, Miyata S, et al. Discovery of dotinurad (FYU-981), a new phenol derivative with highly potent uric acid lowering activity[J]. ACS Med Chem Lett, 2020, 11(10): 2017-2023. doi: 10.1021/acsmedchemlett.0c00176
|
[25] |
Wempe MF, Jutabha P, Quade B, et al. Developing potent human uric acid transporter 1 (hURAT1) inhibitors[J]. J Med Chem, 2011, 54(8): 2701-2713. doi: 10.1021/jm1015022
|
[26] |
Zhao T, Meng Q, Sun ZS, et al. Novel human urate transporter 1 inhibitors as hypouricemic drug candidates with favorable druggability[J]. J Med Chem, 2020, 63(19): 10829-10854. doi: 10.1021/acs.jmedchem.0c00223
|
[27] |
Zhao T, Zhang J, Tao YC, et al. Discovery of novel bicyclic imidazolopyridine-containing human urate transporter 1 inhibitors as hypouricemic drug candidates with improved efficacy and favorable druggability[J]. J Med Chem, 2022, 65(5): 4218-4237. doi: 10.1021/acs.jmedchem.1c02057
|
[28] |
Chen JS, Wu T, Qiu YC, et al. A cell line stably expressing lentivirus-mediated hURAT1 as an in vitro model of screening uricosuric agents[J]. Life Sci Res (生命科学研究), 2016, 20(3): 248-254.
|
[29] |
Zhou H, Zhong G, Bai J, et al. Development of a fluorescence-based assay for screening of urate transporter 1 inhibitors using 6-carboxyfluorescein[J]. Anal Biochem, 2021, 626: 114246. doi: 10.1016/j.ab.2021.114246
|
[30] |
Chen Y, Zhao Z, Li Y, et al. Characterizations of the urate transporter, GLUT9, and its potent inhibitors by patch-clamp technique[J]. SLAS Discov, 2021, 26(3): 450-459. doi: 10.1177/2472555220949501
|
[31] |
Kukal S, Guin D, Rawat C, et al. Multidrug efflux transporter ABCG2: expression and regulation[J]. Cell Mol Life Sci, 2021, 78(21/22): 6887-6939. doi: 10.1007/s00018-021-03901-y
|
[32] |
Eckenstaler R, Benndorf RA. The role of ABCG2 in the pathogenesis of primary hyperuricemia and gout-an update[J]. Int J Mol Sci, 2021, 22(13): 6678. doi: 10.3390/ijms22136678
|
[33] |
Zheng F, Zhao Z, Lin X, et al. Establishment of a cell model stably expressing ABCG2 and its application in screening inhibitors of ABCG2[J]. Life Sci Res (生命科学研究), 2022, 26(2): 117-124.
|
[34] |
Wang Z, Cui T, Ci X, et al. The effect of polymorphism of uric acid transporters on uric acid transport[J]. J Nephrol, 2019, 32(2): 177-187. doi: 10.1007/s40620-018-0546-7
|
[35] |
Wu T, Chen J, Li H, et al. Establishment and application of cell model for screening inhibitors of organic anion transporter 1[J]. Chin Pharm J (中国药学杂志), 2017, 52(1): 36-40.
|
[36] |
Zhao Z, Luo J, Liao H, et al. Pharmacological evaluation of a novel skeleton compound isobavachin (4',7-dihydroxy-8-prenylflavanone) as a hypouricemic agent: dual actions of URAT1/GLUT9 and xanthine oxidase inhibitory activity[J]. Bioorg Chem, 2023, 133: 106405. doi: 10.1016/j.bioorg.2023.106405
|
[37] |
Louisse J, Dellafiora L, Van Den Heuvel JJMW, et al. Perfluoroalkyl substances (PFASs) are substrates of the renal human organic anion transporter 4 (OAT4)[J]. Arch Toxicol, 2023, 97(3): 685-696. doi: 10.1007/s00204-022-03428-6
|
[38] |
Zheng H, Li N, Ding Y, et al. Losartan alleviates hyperuricemia-induced atherosclerosis in a rabbit model[J]. Int J Clin Exp Pathol, 2015, 8(9): 10428-10435.
|
[39] |
Zhang Y, Li Q, Wang F, et al. A zebrafish (danio rerio) model for high-throughput screening food and drugs with uric acid-lowering activity[J]. Biochem Biophys Res Commun, 2019, 508(2): 494-498. doi: 10.1016/j.bbrc.2018.11.050
|
[40] |
Zhang N, Hu X, Dong X, et al. Research progress on animal models of hyperuricemia[J]. J Kunming Med Univ(昆明医科大学学报), 2019, 40(6): 129-134.
|
[41] |
Klinkhammer BM, Djudjaj S, Kunter U, et al. Cellular and molecular mechanisms of kidney injury in 2, 8-dihydroxyadenine nephropathy[J]. J Am Soc Nephrol, 2020, 31(4): 799-816. doi: 10.1681/ASN.2019080827
|
[42] |
Ali BH, Al Salam S, Al Suleimani Y, et al. Effects of the SGLT-2 inhibitor canagliflozin on adenine-induced chronic kidney disease in rats[J]. Cell Physiol Biochem, 2019, 52(1): 27-39. doi: 10.33594/000000003
|
[43] |
Nakagawa T, Tuttle KR, Short RA, et al. Hypothesis: fructose-induced hyperuricemia as a causal mechanism for the epidemic of the metabolic syndrome[J]. Nat Clin Pract Nephrol, 2005, 1(2): 80-86.
|
[44] |
Dalbeth N, Choi HK, Joosten LAB, et al. Gout[J]. Nat Rev Dis Primers, 2019, 5: 69. doi: 10.1038/s41572-019-0115-y
|
[45] |
Wu P, Wang L, Li HT, et al. Progress in hyperuricemia model establishment and uric acid-lowering drugs[J]. Chin J Pathophysiol(中国病理生理杂志), 2021, 37(7): 1283-1294.
|
[46] |
Qiu G, Li Z, Miao MS. Analysis of application characteristics of hyperuricemia animal model based on data mining[J]. Tradit Chin Drug Res Clin Pharmacol (中药新药与临床药理), 2023, 34(2): 222-227.
|
[47] |
Yue Y, Zhang W, Xie Y, et al. Research progress on experimental animal models of hyperuricemia[J]. Chin Pharmacol Bull (中国药理学通报), 2023, 39(2): 201-206.
|
[48] |
Chen G, Sun X, Wang Q, et al. Study on hyperuricemia model in mice[J]. Chin Pharmacol Bull (中国药理学通报), 2001 (3): 350-352.
|
[49] |
Zhang DY, Liu HZ, Luo P, et al. Production inhibition and excretion promotion of urate by fucoidan from Laminaria japonica in adenine-induced hyperuricemic mice[J]. Mar Drugs, 2018, 16(12): 472. doi: 10.3390/md16120472
|
[50] |
Zhou H, Li X, Li Y, et al. Synthesis and bioevaluation of 1-phenylimidazole-4-carboxylic acid derivatives as novel xanthine oxidoreductase inhibitors[J]. Eur J Med Chem, 2020, 186: 111883. doi: 10.1016/j.ejmech.2019.111883
|
[51] |
Wen SS, Wang D, Yu HY, et al. The time-feature of uric acid excretion in hyperuricemia mice induced by potassium oxonate and adenine[J]. Int J Mol Sci, 2020, 21(15): 5178. doi: 10.3390/ijms21155178
|
[52] |
Chen Y, Li C, Duan S, et al. Curcumin attenuates potassium oxonate-induced hyperuricemia and kidney inflammation in mice[J]. Biomed Pharmacother, 2019, 118: 109195. doi: 10.1016/j.biopha.2019.109195
|
[53] |
Li QP, Huang ZW, Liu DF, et al. Effect of berberine on hyperuricemia and kidney injury: a network pharmacology analysis and experimental validation in a mouse model[J]. Drug Des Devel Ther, 2021, 15: 3241-3254. doi: 10.2147/DDDT.S317776
|
[54] |
Coderre TJ, Wall PD. Ankle joint urate arthritis in rats provides a useful tool for the evaluation of analgesic and anti-arthritic agents[J]. Pharmacol Biochem Behav, 1988, 29(3): 461-466. doi: 10.1016/0091-3057(88)90004-4
|
[55] |
Yin CY, Liu BY, Wang P, et al. Eucalyptol alleviates inflammation and pain responses in a mouse model of gout arthritis[J]. Br J Pharmacol, 2020, 177(9): 2042-2057. doi: 10.1111/bph.14967
|
[56] |
Vieira AT, Macia L, Galvão I, et al. A role for gut microbiota and the metabolite-sensing receptor GPR43 in a murine model of gout[J]. Arthritis Rheumatol, 2015, 67(6): 1646-1656. doi: 10.1002/art.39107
|
[57] |
Lu J, Dalbeth N, Yin H, et al. Mouse models for human hyperuricaemia: a critical review[J]. Nat Rev Rheumatol, 2019, 15(7): 413-426. doi: 10.1038/s41584-019-0222-x
|
[58] |
Lu J, Hou X, Yuan X, et al. Knockout of the urate oxidase gene provides a stable mouse model of hyperuricemia associated with metabolic disorders[J]. Kidney Int, 2018, 93(1): 69-80. doi: 10.1016/j.kint.2017.04.031
|
[59] |
Preitner F, Bonny O, Laverrière A, et al. Glut9 is a major regulator of urate homeostasis and its genetic inactivation induces hyperuricosuria and urate nephropathy[J]. Proc Natl Acad Sci U S A, 2009, 106(36): 15501-15506. doi: 10.1073/pnas.0904411106
|
[60] |
Toyoda Y, Takada T, Miyata H, et al. Identification of GLUT12/SLC2A12 as a urate transporter that regulates the blood urate level in hyperuricemia model mice[J]. Proc Natl Acad Sci U S A, 2020, 117(31): 18175-18177. doi: 10.1073/pnas.2006958117
|
[61] |
Takada T, Ichida K, Matsuo H, et al. ABCG2 dysfunction increases serum uric acid by decreased intestinal urate excretion[J]. Nucleosides Nucleotides Nucleic Acids, 2014, 33(4/5/6): 275-281.
|
[62] |
Taniguchi T, Omura K, Motoki K, et al. Hypouricemic agents reduce indoxyl sulfate excretion by inhibiting the renal transporters OAT1/3 and ABCG2[J]. Sci Rep, 2021, 11(1): 7232. doi: 10.1038/s41598-021-86662-9
|
[63] |
Li YY, Zhou HY, Wu LY, et al. Establishment and study of a hyperuricemia rat model[J]. Acta Lab Anim Sci Sin (中国实验动物学报), 2019, 27(6): 747-752.
|
[64] |
Ding K, Cao WF, Zhang YY, et al. Effect of Qushi-Dizhuo Decoction on urate transporters in hyperuricemia rats[J]. Chin J Pathophysiol (中国病理生理杂志), 2019, 35(8): 1514-1520.
|
[65] |
Sui XL, Xie TF, Xu YP, et al. Protease-activated receptor-2 and phospholipid metabolism analysis in hyperuricemia-induced renal injury[J]. Mediators Inflamm, 2023, 2023: 5007488.
|
[66] |
Shen G, Yu S. Establishment of a rat model of hyperuricemia associated with uric acid excretion disorder[J]. Chin J Comp Med (中国比较医学杂志), 2017, 27(8): 55-59.
|
[67] |
Chen GL, Zhu LR, Na S, et al. Effect of total saponin of Dioscorea on chronic hyperuricemia and expression of URAT1 in rats[J]. China J Chin Mater Med (中国中药杂志), 2013, 38(14): 2348-2353.
|
[68] |
Liu DL, Guo QH, Xia YM, et al. Establishment of a rat model of chronic hyperuricemia with renal damage[J]. Acta Lab Anim Sci Sin (中国实验动物学报), 2021, 29(3): 364-370.
|
[69] |
Liu Z, Chen T, Niu H, et al. The establishment and characteristics of rat model of atherosclerosis induced by hyperuricemia[J]. Stem Cells Int, 2016, 2016: 1365257.
|
[70] |
Mazzali M, Hughes J, Kim YG, et al. Elevated uric acid increases blood pressure in the rat by a novel crystal-independent mechanism[J]. Hypertension, 2001, 38(5): 1101-1106. doi: 10.1161/hy1101.092839
|
[71] |
Li Q, Liu J, Liu XJ, et al. Establishment of rat model of hyperuricemia by feeding potassium oxonate combined with fructose[J]. J Third Mil Med Univ (第三军医大学学报), 2018, 40(7): 569-576.
|
[72] |
Zhao K. The clinical and experimental research of Huazhuo Decoction improve endothelial function in patients with type 2 diabetes mellitus and high uric acid hematic disease (化浊汤改善2型糖尿病合并高尿酸血症患者内皮功能的临床及实验研究)[D]. Jinan: Shandong University of Traditional Chinese Medicine, 2015.
|
[73] |
Zhou M, Ze K, Hua L, et al. Cyr61 promotes inflammation of a gouty arthritis model in rats[J]. Mediators Inflamm, 2020, 2020: 8298615.
|
[74] |
Li L, Wang D, Wang X, et al. N-Butyrylated hyaluronic acid ameliorates gout and hyperuricemia in animal models[J]. Pharm Biol, 2019, 57 (1): 717-728.
|
[75] |
Yao R, Geng Z, Mao X, et al. Tu-Teng-Cao extract alleviates monosodium urate-induced acute gouty rrthritis in rats by inhibiting uric acid and inflammation[J]. Evid Based Complement Alternat Med, 2020, 2020 : 3095624.
|
[76] |
Gao Y, Yu Y, Qin W, et al. Uricase-deficient rats with similarly stable serum uric acid to human’s are sensitive model animals for studying hyperuricemia[J]. PLoS One, 2022, 17(3): e0264696. doi: 10.1371/journal.pone.0264696
|
[77] |
Hong F, Zheng A, Xu P, et al. High-protein diet induces hyperuricemia in a new animal model for studying human gout[J]. Int J Mol Sci, 2020, 21(6): 2147. doi: 10.3390/ijms21062147
|
[78] |
Lin Z, Zhang B, Liu X, et al. Effects of chicory inulin on serum metabolites of uric acid, lipids, glucose, and abdominal fat deposition in quails induced by purine-rich diets[J]. J Med Food, 2014, 17(11): 1214-1221. doi: 10.1089/jmf.2013.2991
|
[79] |
Bian M, Wang J, Wang Y, et al. Chicory ameliorates hyperuricemia via modulating gut microbiota and alleviating LPS/TLR4 axis in quail[J]. Biomed Pharmacother, 2020, 131: 110719. doi: 10.1016/j.biopha.2020.110719
|
[80] |
Tang DH, Wang CY, Huang X, et al. Inosine induces acute hyperuricaemia in rhesus monkey (Macaca mulatta) as a potential disease animal model[J]. Pharm Biol, 2021, 59(1): 175-182.
|
[81] |
Kim J, Koo BK, Knoblich JA. Human organoids: model systems for human biology and medicine[J]. Nat Rev Mol Cell Biol, 2020, 21(10): 571-584. doi: 10.1038/s41580-020-0259-3
|
[82] |
Strikoudis A, Cieślak A, Loffredo L, et al. Modeling of fibrotic lung disease using 3D organoids derived from human pluripotent stem cells[J]. Cell Rep, 2019, 27(12): 3709-3723. doi: 10.1016/j.celrep.2019.05.077
|
[83] |
Tang XY, Wu S, Wang D, et al. Human organoids in basic research and clinical applications[J]. Signal Transduct Target Ther, 2022, 7(1): 168. doi: 10.1038/s41392-022-01024-9
|
[84] |
Prior N, Inacio P, Huch M. Liver organoids: from basic research to therapeutic applications[J]. Gut, 2019, 68(12): 2228-2237. doi: 10.1136/gutjnl-2019-319256
|
[85] |
Hou C, Hu Y, Jiang H, et al. Establishment of a 3D hyperuricemia model based on cultured human liver organoids[J]. Free Radic Biol Med, 2022, 178: 7-17. doi: 10.1016/j.freeradbiomed.2021.11.023
|
[86] |
Zhang M, Zhu X, Wu J, et al. Prevalence of hyperuricemia among Chinese A: findings from two nationally representative cross-sectional surveys in 2015-16 and 2018-19[J]. Front Immunol, 2022, 12: 791983. doi: 10.3389/fimmu.2021.791983
|
[87] |
Li Y, Zhao Z, Luo J, et al. Apigenin ameliorates hyperuricemic nephropathy by inhibiting URAT1 and GLUT9 and relieving renal fibrosis via the Wnt/β-catenin pathway[J]. Phytomedicine, 2021, 87: 153585. doi: 10.1016/j.phymed.2021.153585
|
[1] | ZHANG Zhixing, DENG Hua, TANG Yun. Applications and challenges of artificial intelligence in the development of anticancer peptides[J]. Journal of China Pharmaceutical University, 2024, 55(3): 347-356. DOI: 10.11665/j.issn.1000-5048.2024040201 |
[2] | HU Zi’ang, GAO Liming, YU Wenying. Advances in the application of artificial intelligence in nucleic acid drug development[J]. Journal of China Pharmaceutical University, 2024, 55(3): 335-346. DOI: 10.11665/j.issn.1000-5048.2024033101 |
[3] | ZENG Hao, WU Guozhen, ZOU Wuxin, WANG Zhe, SONG Jianfei, SHI Hui, WANG Xiaojian, HOU Tingjun, DENG Yafeng. Optimization of Menin inhibitors based on artificial intelligence-driven molecular factory technology[J]. Journal of China Pharmaceutical University, 2024, 55(3): 326-334. DOI: 10.11665/j.issn.1000-5048.2024040904 |
[4] | CHEN Baiyu, LYU Lunan, XU Xiaodi, ZHANG Ying, LI Wei, FU Wei. Reflections on improving drug success rates with AIDD and CADD[J]. Journal of China Pharmaceutical University, 2024, 55(3): 284-294. DOI: 10.11665/j.issn.1000-5048.2024011302 |
[5] | PU Chengtao, GU Lingqian, CHEN Xingye, ZHANG Yanmin. Prediction of human intestinal absorption properties based on artificial intelligence[J]. Journal of China Pharmaceutical University, 2023, 54(3): 355-362. DOI: 10.11665/j.issn.1000-5048.2023032102 |
[6] | XUE Feng, FENG Shuo, LI Jing. Application and prospect of artificial intelligence in antimicrobial peptides screening[J]. Journal of China Pharmaceutical University, 2023, 54(3): 314-322. DOI: 10.11665/j.issn.1000-5048.2023030901 |
[7] | GU Zhihao, GUO Wenhao, YAO Hequan, LI Xuanyi, LIN Kejiang. Research progress of the screening and generation of lead compounds based on artificial intelligence model[J]. Journal of China Pharmaceutical University, 2023, 54(3): 294-304. DOI: 10.11665/j.issn.1000-5048.2023042201 |
[8] | YU Zehao, ZHANG Leiming, ZHANG Mengna, DAI Zhiqi, PENG Chengbin, ZHENG Siming. Artificial intelligence-based drug development: current progress and future challenges[J]. Journal of China Pharmaceutical University, 2023, 54(3): 282-293. DOI: 10.11665/j.issn.1000-5048.2023041003 |
[9] | WANG Chao, XIAO Fu, LI Miaozhu, PAN Ying, DING Xiao, REN Feng, ZHAVORONKOV Alex, WANG Yazhou. Application progress of artificial intelligence in the screening and identification of drug targets[J]. Journal of China Pharmaceutical University, 2023, 54(3): 269-281. DOI: 10.11665/j.issn.1000-5048.2023041102 |
[10] | YAN Fangrong. Application and advance of artificial intelligence in biomedical field[J]. Journal of China Pharmaceutical University, 2023, 54(3): 263-268. DOI: 10.11665/j.issn.1000-5048.2023030304 |